
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Unit 1: Introduction] 
Web Technology (CSC-353) 

 

 

Jagdish Bhatta 
 

Central Department of Computer Science & Information Technology 
Tribhuvan University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

2 | P a g e

 
 
 
 
 
 
 
 
 
 
 
 

Introduction: 
 
Web technologies related to the interface between web servers and their clients. This information includes 
markup languages, programming interfaces and languages, and standards for document identification and 
display. In general web technology incorporates tools and techniques for web development. 

 
Web Development is a broad term for the work involved in developing a web site for World Wide Web. 
This can include web design, web content development, client liaison, client-side/server-side scripting, web 
server and network security configuration, and e- commerce development. However, among web 
professionals, "web development" usually refers to the main non-design aspects of building web sites: writing 
markup and coding. Web development can range from developing the simplest static single page of plain 
text to the most complex web-based internet applications, electronic businesses, or social network services. 

 
Web design is a broad term used to encompass the way that content (usually hypertext or hypermedia)  is 
delivered  to  an end-user  through the  World  Wide  Web,  using  a web browser or other web-enabled 
software is displayed. The intent of web design is to create a website—a collection of online content 
including documents and applications that reside on a web servers. A website may include text, images, 
sounds and other content, and may be interactive. 

 
For the typical web sites, the basic aspects of design are: 

 
- The content: the substance, and information on the site should be relevant to the site and should target the 
area of the public that the website is concerned with. 

 
- The usability: the site should be user-friendly, with the interface and navigation simple and reliable. 

 
-  The  appearance:  the  graphics  and  text  should  include  a  single  style  that  flows throughout, to show 
consistency. The style should be professional, appealing and relevant. 

 
- The structure: of the web site as a whole. 

 
Internet and its Evolution: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

3 | P a g e

 
 
Internet is a short form of the technical term internetwork, the result of interconnecting computer networks 
with special gateways or routers. The Internet is also often referred to as the Net. The Internet is a massive 
network of networks, a networking infrastructure. It connects  millions  of  computers  together  globally,  
forming  a  network  in  which  any computer can communicate with any other computer as long as they are 
both connected to the Internet. Information that travels over the Internet does so via a variety of languages 
known as protocols. The Internet is loosely connected compared with the randomized graph. 

 
The Internet is a globally distributed network comprising many voluntarily interconnected autonomous 
networks. It operates without a central governing body. However, to maintain interoperability, all technical 
and policy aspects of the underlying core infrastructure and the principal name spaces are administered by 
the Internet Corporation for Assigned Names and Numbers (ICANN). 

 
The  history  of the Internet  starts in  the 1950s and  1960s  with  the development  of computers. This 
began with point-to-point communication between mainframe computers and terminals, expanded to point-to-
point connections between computers and then early research into packet switching. 

 
Since the  mid-1990s the Internet  has  had a drastic  impact  on culture and  commerce, including the rise 
of near instant communication by electronic mail, instant messaging, Voice over Internet Protocol (VoIP) 
"phone calls", two-way interactive video calls, and the World  Wide  Web  with  its  discussion  forums,  
blogs,  social  networking,  and  online shopping sites. (Just go through the brief history yourself) 

 
World Wide Web: 

 
WWW is a system of interlinked  hypertext  documents accessed  via the Internet. The World Wide 
Web, or simply Web, is a way of accessing information over the medium of the Internet. It is an 
information-sharing model that is built on top of the Internet. The Web uses the HTTP protocol, only one of 
the languages spoken over the Internet, to transmit data. Web services, which use HTTP to allow applications 
to communicate in order to exchange  business  logic,  use  the  Web  to  share  information.  The  Web  also  
utilizes browsers, such as Internet Explorer or Firefox, to access Web documents called Web pages that are 
linked to each other via hyperlinks. Web documents also contain graphics, sounds, text and video. 

 
The Web is one of the services that runs on the Internet. It is a collection of textual documents and other 
resources, linked by hyperlinks and URLs, transmitted by web browsers and web servers. The Web is just  
one of the ways that  information can be disseminated over the Internet, so the Web is just a portion of 
the Internet. In short, the Web can be thought of as an application "running" on the Internet 

 
What is Hypertext? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

4 | P a g e

 
 
Hypertext provides the links between different documents and different document types. In a hypertext 
document, links from one place in the document to another are included with the text. By selecting a link, 
you are able to jump immediately to another part of the document or even to a different document. In the 
WWW, links can go not only from one document to another, but from one computer to another 

 
 
 
 
World Wide Consortium: 

 
The  World  Wide  Web  Consortium  (W3C)  is  the  main   international  standards organization for 
the  World  Wide Web. W3C was created to ensure compatibility and agreement among industry 
members in the adoption of new standards. Prior to its creation, incompatible versions of HTML were offered 
by different vendors, increasing the potential for inconsistency between web pages. The consortium was 
created to get all those vendors to  agree  on  a  set  of  core  principles  and  components  which  would  be  
supported  by everyone. 

 
Web Page: 

 
A web page    is a document or information resource that is suitable for the World Wide Web and can be 
accessed through a web browser and displayed on a monitor or mobile device. This information is usually in 
HTML or XHTML format, and may provide navigation to other web pages via hypertext links. Web pages 
frequently subsume other resources such as style sheets, scripts and images into their final presentation. 

 
Web pages may be retrieved from a local computer or from a remote web server. The web server may 
restrict access only to a private network, e.g. a corporate intranet, or it may publish pages on the World Wide 
Web. Web pages are requested and served from web servers using Hypertext Transfer Protocol (HTTP). 

 
Web pages may consist of files of static text and other content stored within the web server's file 
system (static web pages), or may be constructed by server-side software when they are requested (dynamic 
web pages). Client-side scripting can make web pages more responsive to user input once on the client 
browser. 

 
Web Site: 

 
A website or simply site, is a collection of related web pages containing images, videos or other digital 
assets. A website  is hosted on at  least  one web server, accessible  via a network such as the Internet or 
a private local area network through an Internet address known as a Uniform Resource Locator. All publicly 
accessible websites collectively constitute the World Wide Web. Web sites can be static or dynamic. 

 
Static Website: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

5 | P a g e

 
 
A static website is one that has web pages stored on the server in the format that is sent to a client web 
browser. It is primarily coded in Hypertext Markup Language, HTML. 

 
Simple forms or marketing examples of websites,  such as classic website, a five-page website or a 
brochure website are often static websites, because they present pre-defined, static information to the user. 
This may include information about a company and its products and services via text, photos, animations, 
audio/video and interactive menus and navigation. 

 
This type of website usually displays the same  information to  all visitors. Similar to handing out a 
printed brochure to customers or clients, a static website will generally provide consistent, standard 
information for an extended period of time. Although the website owner may make updates periodically, it 
is a manual process to edit the text, photos and other content and may require basic website design skills 
and software. 

 
In summary, visitors are not able to control what information they receive via a static website, and must 
instead settle for whatever content the website owner has decided to offer at that time. 

 
Dynamic Website: 

 
A dynamic website is one that changes or customizes itself frequently and automatically, based on certain 
criteria. 

 
Dynamic websites can have two types of dynamic activity: Code and Content. Dynamic code is invisible or 
behind the scenes and dynamic content is visible or fully displayed. 

 
The first type is a web page with dynamic code. The code is constructed dynamically on the fly using 
active programming language instead of plain, static HTML. 

 
The second type is a website with dynamic content displayed in plain view. Variable content is 
displayed dynamically on the fly based on certain criteria, usually by retrieving content stored in a database 

 
Domain Names, DNS, and URLs: 

 
  IP addresses are not convenient for users to remember easily. So an IP address can be represented by 

a natural language convention called a domain name 
 

  Domain name system (DNS) translates domain names into IP addresses. DNS is 
the “phone book” for the Internet, it maps between host names and IP addresses. 

 
  A uniform resource locator (URL), which is the address used by a Web browser to identify the 

location of content on the Web, also uses a domain name as part of the URL. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

6 | P a g e

 
 

  Syntax: scheme: scheme-depend-part. Example: In http://www.example.com/, the scheme is http. 

 
 

 
 
HTTP: 

 
  HTTP is based on the request-response communication model: 

o Client sends a request 
o Server sends a response 
o HTTP is a stateless protocol: where the protocol does not require the server 

to remember anything about the client between requests. 
 

  Normally implemented over a TCP connection (80 is standard port number for 
HTTP) 

 
  The following is the typical browser-server interaction using HTTP: 

1. User enters Web address in browser 
2. Browser uses DNS to locate IP address 
3. Browser opens TCP connection to server 
4. Browser sends HTTP request over connection 
5. Server sends HTTP response to browser over connection 
6. Browser displays body of response in the client area of the browser window 

 
Client/Server Computing: 

 
  A model of computing in which powerful personal computers are connected in a network together with 

one or more servers 
 
  Client is a powerful personal computer that is part of a network; service requester 

 
  Server is a networked computer dedicated to  common functions that the client computers on the 

network need; service provider 
 
  Web is based on client/server technology. Web servers are included as part of a larger package of 

internet and intranet related programs for serving e-mail, downloading  requests  for  FTP  files  and  
building  and  publishing  web  pages. Typically the e-commerce customer is the client and the 
business is the server.  In the client/ server model single machine can be both client and the server 
The client/ server model utilises a database server in which RDBMS user queries can be answered 
directly by the server. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

7 | P a g e

 
 
 

  The                                                                                                                       client/ 
server 

 
 
 
 
 
 
 
 

architecture reduces network traffic by providing a query response to the user rather than transferring 
total files. The client/ server model improves multi-user updating through a graphical user interface 
(GUI) front end to the shared database. In client/ server  architectures  client  and  server  typically  
communicate  through  statements made in structured query language (SQL). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig: Client/ Server Model 
 
Web Clients: 

 
It typically refers to the Web browser in the user's machine. It is a software application for retrieving, 
presenting, and traversing information resources on the web server. It is used to create a HTTP request 
message and for processing the HTTP response message. 

 
User agent: Any web client is designed to directly support user access to web servers is known as user agent. 
Web browsers can run on desktop or laptop computers. Some of the browsers are: Internet Explorer, Mozilla, 
FireFox, Chrome, Safari, Opera, Netscape Navigator. 

 

 
Web Browsers: 

 
Browsers are software programs that allow you to search and view the  many different kinds of 
information that's available on the World Wide Web. The information could be web sites, video or audio 
information. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

8 | P a g e

 
 
 
 
 

 
 
Status Bar: You will find the status bar at the very bottom of your browser window. It basically tells you 
what you are doing at the moment. Mainly, it shows you load speed and the URL address of whatever your 
mouse is hovering over. 

 
Title Bar: You will find this bar at the absolute top of your browser and in will be the colour blue for the 
major browsers. The purpose of the Title bar is to display the title of the web page that you are currently 
viewing. 

 
Menu Bar: The menu bar contains a set of dropdown menus 

 
Navigational Tool: A bar contains standard push button controls that allow the user to return to a previously 
viewed page, to reverse and refresh the page, to display the home page and to print the page etc. 

 
Toolbar Icons: You will find the Toolbar directly under the Title Bar. The Toolbar is where you will 
find the back button, home button and the refresh button etc. 

 
Client Area: It is a display window which is the space in which you view the website. 

 
Scroll Bars: The Scroll bars, usually located to the right of the Display Window, allows you to "scroll" 
(move down or up the web page) so you can view info rmation that is below or above what is currently in the 
Display Window. 

 
 
Web Servers: 

 
Basic functionality: 
  It receives HTTP request via TCP 
  It maps Host header to specific virtual host (one of many host names sharing an IP 

address) 
  It maps Request-URI to specific resource associated with the virtual host 

o File: Return file in HTTP response 
o Program: Run program and return output in HTTP response 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

9 | P a g e

 
 

  It maps type of resource to appropriate MIME type and use to set Content-Type header in HTTP 
response 

  It Logs information about the request and response 
  All e-commerce site require basic Web server software to answer requests from 

customers like ; 
o Apache 

    Leading Web server software (47% of market) 
    Works with UNIX, Linux , Windows OSs 

o Microsoft’s Internet Information Server (IIS) 
    Second major Web server software (25% of market) 
    Windows-based 

 
Client-Side Scripting: 

 
  Client-side scripting generally refers to writing the class of computer programs (scripts) on the web 

that are executed at client-side, by the user's web browser, instead of server-side (on the web server). 
Usually scripts are embedded in the HTML page itself. 

 
  JavaScript , VBScript, Jscript, Java Applets etc. are the examples of client side scripting  

technologies.  JavaScript  is probably the  most  widely used  client-side scripting language. 
 

  Client-side scripts have greater access to the information and functions available on the  user's  
browser,  whereas  server-side  scripts  have  greater  access  to  the information and functions 
available on the server. Upon request, the necessary files are sent to the user's computer by the web 
server (or servers) on which they reside. The user's web browser executes the script, then displays the 
document, including any visible output from the script. 

 
  Client-side  scripts  may  also  contain  instructions  for  the  browser  to  follow  in response to certain 

user actions, (e.g., clicking a button). Often, these instructions can be followed without further 
communication with the server. 

 
Server-Side Scripting: 

 
  Includes writing the applications executed by the server at run-time to process client input or 

generate document in response to client request. So server side script consists the directives embedded 
in Web page for server to process before passing page to requestor. 

 
  It is usually used to provide interactive web sites that interface to databases or other data stores. 

 
  This is different from client-side scripting where scripts are run by the viewing web browser, usually 

in JavaScript. The primary advantage to server-side scripting is 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

10 | P a g e

 
 

the ability to  highly customize the response  based  on the user's requirements, access rights, or 
queries into data stores. 

  PHP, JSP, ASP…. etc,  are the server side scripting technologies. 
 
Web 2.0: 

 
The term Web 2.0 is associated with web applications that facilitate participatory information  sharing,  
interoperability,  user-centered  design,  and  collaboration  on  the World Wide Web. A Web 2.0 site allows 
users to interact and collaborate with each other in a social media dialogue as creators   of user-generated 
content in a virtual community, in contrast to websites where users    are limited to the passive viewing of 
content that was created for them. Examples of Web 2.0 include social networking sites, blogs, wikis, video 
sharing sites, hosted services, web applications. 

 
I think following portion you have studied in Data Communication (So Self Study) 

 
 
 
 
SMTP: 

 
Simple Mail Transfer Protocol (SMTP) is an Internet standard for electronic mail (e- mail) transmission 
across Internet Protocol (IP) networks. 

 
POP: 

 
In computing, the Post Office Protocol (POP) is an application-layer Internet standard protocol used by 
local e-mail clients to retrieve e-mail from a remote server over a TCP/IP connection. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

11 | P a g e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HTML 
 
HTML stands for hypertext markup language. It is not a programming language. A markup language 
specifies the layout and style of a document. A markup language consists of a set of markup tags. HTML 
uses markup tags to describe web pages. HTML tags are keywords surrounded by angle brackets like 
<html>. Most HTML tags normally come in pairs like <b> and </b>. The first tag is called the start tag 
(or opening tag) and the second tag is called the end tag (or closing tag). HTML documents describe Web 
pages. HTML documents contain HTML tags and plain text. HTML documents are also called Web pages. A 
web browser read HTML documents and displays them as Web pages. The browser does not display the 
HTML tags, but uses the tags to interpret the content of the page. A simple HTML document is given below: 

 
 
<html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

12 | P a g e

 

 
<head> 

<title>This is my first web page</title> 
</head> 
<body> 

<h1>My first heading</h1> 
<p>My first paragraph</p> 

</body> 
</html> 

 

Save this page with .html or .htm extension. However, it is good practice to use .htm 
extension. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

13 | P a g e

 
 

HTML Elements 
HTML documents are defined by HTML elements. An HTML element is everything from 
the start tag to the end tag. For example, <p>My first paragraph</p>. An HTML element consists of start 
tag, end tag, and element content. The element content  is everything between the start tag and end tag. 
Empty elements are closed in the start tag. Most HTML elements can have attributes. For example, src 
attribute of img tag. 

 

 
 
HTML Attributes 
Attributes provide additional information about HTML elements. Attributes are always 
specified in the start tag. Attributes come in name/value pair like name = “value”. For 
example, HTML links are defined with <a> tag and the link address is provided as an attribute href like 
<a href = “http://www.tu.edu.np”>cdcsit</a>. 
Note: Always quote attribute values and use lowercase attributes. 

 

 
 
HTML Headings 
HTML headings are defined with the <h1> to <h6> tags. <h1> displays largest text and 
<h6> smallest. For example, <h1>My first heading</h1>. 

 

 
 
HTML Paragraphs 
HTML paragraphs are defined with <p> tag. For example, <p>My first paragraph</p>. 

 
 
HTML Rules (Lines) 
We use <hr /> tag to create horizontal line. 

 
 
HTML Comments 
We use comments to make our HTML code more readable and understandable. Comments 
are ignored by the browser and are not displayed. Comments are written between <!-- and - 
->. For example, <!-- This is a comment -->. 

 

 
 
HTML Line Breaks 
If you want a new line (line break) without starting a new paragraph, use <br /> tag. 

 
 
 

HTML Formatting Tags 
We use different tags for formatting output. For example, <b> is used for bold and <i> is used for italic 
text. Some other tags are <big>, <small>, <sup>, <sub> etc. 

 

 
 
HTML Styles 
It is a new HTML attribute. It introduces CSS to HTML. The purpose of style attribute is to  provide a 
common way to  style all HTML elements. For example, <body style = 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

14 | P a g e

 
 
“background-color:yellow”>,   <p   style   =   “font-family:courier   new;   color:red;   font- 
size:20px”>, <h1 style = “text-align:center”> etc. 

 

 
 
HTML Links 
A link is the address to a resource on the web. HTML links are defined using an anchor tag 
(<a>). We can use this tag to point to a resource (an HTML page, an image, a sound file, a 
movie etc.) and an address inside a document. 

 
We  can  use  href  attribute  to  define  the  link  address.  For  example,  <a  href  = 
“http://www.cdcsit.tu.edu.np”>cdcsit</a>. 

 
We can use target attribute to define where the linked document will be opened. For example, <a href = 
“http://www.cdcsit.tu.edu.np” target = “_blank”>cdcsit</a> will open the document in a new window. 

 
We can use name attribute to define a named anchor inside a HTML document. Named anchor are invisible 
to the reader. For example, <a name = “label”>Any content</a> defines a named anchor and we use the 
syntax <a href = “#label”>Any content</a> to link to the named anchor. 
We can also use named anchor to link to some content within another document. For 
example, <a href="http://www.w3schools.com/html_tutorial.htm#tips">Jump to the Useful 
Tips section</a>. 

 

 
 
HTML Images 
HTML images are defined with <img> tag. To display an image on a page, you need to use the src 
attribute. We can also use width and height attributes with img tag. For 
example, <img src = “photo1.jpg” width = “104” height = “142” />. 

 
We	can	use	alt	attribute	to	define	an	alternate	text	for	an	image.	For	example,	<img src 
= “photo1.jpg” width = “104” height = “142” alt = “My best poto”/>. The	"alt"	attribute	tells	 the	reader	
what	he	or	she	 is	missing	on	a	page	 if	 the	browser	can't	 load	 images.	The	 browser	 will	 then	 display	
the	 alternate	 text	 instead	 of	 the	 image.	 It	 is	 a	 g	ood	practice	to	 include	 the	"alt"	 attribute	 for	each	
image	on	a	page,	to	improve	the	display	and	usefulness	of	your	document	for	people	who	have	text‐only	
browsers.	

	

	
	
HTML Tables 
Tables are defined with the <table> tag. A table is divided into rows (with the <tr> tag), and each row is 
divided into data cells (with the <td> tag). The letters td stands for "table 
data," which is the content of a data cell.  A data cell can contain text, images, lists, paragraphs, 
forms, horizontal rules, tables, etc. For example, 

 

<table border="1"> 
<tr> 
<td>row 1, cell 1</td> 
<td>row 1, cell 2</td> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

15 | P a g e

 
 
</tr> 
<tr> 
<td>row 2, cell 1</td> 
<td>row 2, cell 2</td> 
</tr> 
</table> 

 

Output:    
row 1, cell 1 row 1, cell 2 
row 2, cell 1 row 2, cell 2 

 

We use border attribute to display table with border as shown in the above example. Headings in a 
table are defined with <th> tag. For example, 
<table border="1"> 
<tr> 
<th>Heading</th> 
<th>Another Heading</th> 
</tr> 
<tr> 
<td>row 1, cell 1</td> 
<td>row 1, cell 2</td> 
</tr> 
<tr> 
<td>row 2, cell 1</td> 
<td>row 2, cell 2</td> 
</tr> 
</table> 

 

 
 

Output:        
Heading Another Heading 

row 1, cell 1 row 1, cell 2 
row 2, cell 1 row 2, cell 2 

 
We can use <caption> tag inside a <table> to display caption for a table. We can define table cells that  
span  more than one row or one column  using  colspan  and  rowspan attributes  respectively.   For  
example,   <td  colspan  =   “2”>Data</td>.   We  can  use cellpadding and cellspacing attributes to 
create white space between the cell content and its borders, and to increase the distance between cells 
respectively. For example, <table border="1" cellpadding="10"> and <table border="1" cellspacing="10">. 
We can use align attribute to align the contents of a cell. For example, <td align = “left”>Data</td>. 

 
 

HTML Lists 
HTML supports ordered, unordered and definition lists. Ordered lists items are marked with numbers, 
letter etc. We use <ol> tag for ordered list and each list item starts with <li> 
tag. For example, 

 

<ol type="A"> 
<li>Apples</li> 

<li>Bananas</li> 
<li>Lemons</li> 
<li>Oranges</li> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

16 | P a g e

 
 
</ol> 

 

Output: 
A.  Apples 
B.  Bananas 
C.  Lemons 
D.  Oranges 

 
If we do not use type attribute, items are marked with numbers. We use type = “a” for lowercase letters list, 
type = “I” for roman numbers list, and type = “i” for lowercase numbers list. 

 
Unordered lists items are marked with bullets. We use <ul> tag for unordered list and each list item starts 
with <li> tag. For example, 

 

<ul type="disc"> 
<li>Apples</li> 
<li>Bananas</li> 
<li>Lemons</li> 
<li>Oranges</li> 

</ul> 
 

Output: 
    Apples 
    Bananas 
    Lemons 
    Oranges 

 
If we do not use type attribute, items are marked with discs. We use type = “circle” for circle bullets list, 
and type = “square” for square bullets list. 

 
Definition list is the list of items with a description of each item. We use <dl> tag for definition list, 
<dt> for definition term, and <dd> for definition description. For example, 
<dl> 

<dt>Coffee</dt> 
<dd>Black hot drink</dd> 

<dt>Milk</dt> 
<dd>White cold drink</dd> 

</dl> 
 

Output: 
Coffee 

Black hot drink 
Milk 

White cold drink 
 

HTML Forms 
Forms are used to select different types of user input. A form is an area that contains 
different form elements (like text fields, text area fields, drop-down menus, radio buttons, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

17 | P a g e

 
 
checkboxes etc.). Form elements are elements that allow the user to enter information in a form. A form is 
defined with the <form> tag. For example, 

 

<form> 
input elements 

</form> 
 

The most commonly used form tag is <input> tag. The type of input is specified with the 
type attribute within the <input> tag. For example, 

 

<form> 
First name: 
<input type="text" name="firstname" /> 

<br /> 
Last name: 
<input type="text" name="lastname" /> 

</form> 
 

Output: First name: Last 

name: 

Another input type is radio button.  Radio buttons are used when you want the user to 
select one of a limited number of choices. For example, 

 

<form> 
<input type="radio" name="sex" value="male" /> Male 
<br /> 
<input type="radio" name="sex" value="female" /> Female 
</form> 

 

 
 
Output: 

 
Male 

 
Female 

 
 
Another input type is checkboxes.  Checkboxes are used when you want to select one or more options of a 
limited number of choices. For example, 

 

<form> 
I have a bike: 
<input type="checkbox" name="vehicle" value="Bike" /> 
<br /> 
I have a car: 
<input type="checkbox" name="vehicle" value="Car" /> 
<br /> 
I have an airplane: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

18 | P a g e

 

 

 

 
 
<input type="checkbox" name="vehicle" value="Airplane" /> 
</form> 

 

Output: 
 
I have a bike: I have a car: 

I have an airplane: 
 
 

Another input type is submit button. When the user clicks on the "Submit" button, the content of the form is 
sent to the server. The form's action attribute defines the name of the  file  to  send  the  content  to.  The  
file  defined  in  the  action  attribute  usually  does something with the received input. For example, 

 

<form name="input" action=" submit.php" method="get"> Username: 
<input type="text" name="user" /> 
<input type="submit" value="Submit" /> 

</form> 
 
 
 
Output: 

 
 
 

Username: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

19 | P a g e

Submit 

 
If you type some characters in the text field above, and click the "Submit" button, the browser will send your 
input to a page called "submit.php". The page will show you the received input. 

Note: You can use other different form elements as well. 
 
The method attribute of <form> tag specifies how to send form-data (the form-data is sent to the page 
specified in the action attribute). We can use “get” and “post” as values of method attribute. When we use 
get, form-data can be sent as URL variables and when we use post, form-data are sent as HTTP post. 

 
Notes on the "get" method: 

     This method appends the form-data to the URL in name/value pairs 
 There is a limit to how much data you can place in a URL (varies between browsers), therefore, you 

cannot be sure that all of the form-data will be correctly transferred 
     Never use the "get" method to pass sensitive information! (password or other 

sensitive information will be visible in the browser's address bar) 
 
Notes on the "post" method: 

     This method sends the form-data as an HTTP post transaction 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

20 | P a g e

 
 

 The "post" method is more robust and secure than "get", and "post" does not have size limitations 
 
We  can  create  a  simple  drop-down box  on  an  HTML  page.  A drop-down box  is  a selectable list. See 
code below: 

 

<select name="cars">
<option value="volvo">Volvo</option>
<option value="saab">Saab</option>
<option value="fiat">Fiat</option>
<option value="audi">Audi</option>
</select>

Output: 
Volvo 

 
 
 
HTML Color 
HTML colors are displayed using RED, GREEN, and BLUE light. Colors are defined 
using hexadecimal (hex) notation for combination of red, green, and blue color values (RGB). The lowest 
value that can be given to one of the light sources is 0 (hex 00) and the highest values is 255 (hex FF). We 
can use HEX (e.g. #2000FF) as well as RGB (e.g. rgb(32, 0, 255)) values to define different colors. 

 
The combination of Red, Green and Blue values from 0 to 255 gives a total of more than 
16 million different colors to play with (256 x 256 x 256). 

 
We can also  use  color  names  instead  of hex and  rgb  values.  The  World  Wide  Web Consortium 
(W3C) has listed 16 valid color names for HTML and CSS: aqua, black, blue, fuchsia, gray, green, lime, 
maroon, navy, olive, purple, red, silver, teal, white, and yellow. Some examples are given below: 

 

<body style = "background:rgb(12, 32, 255)"> 
<body style = "background:#0008FF> 
<body style = "background:red"> 

 

 
 
HTML Frames 
We can use frames to display more than one web page in the same browser window. Each 
HTML document is called a frame, and each frame is independent of the others. The disadvantages of using 
frames are: 

     The web developer must keep track of more HTML documents 
     It is difficult to print the entire page 

 
We use <frameset> tag to define how to divide the window into frames. Each frameset defines a set of rows 
or columns. Within frameset, we use <frame> tag to define what HTML document to put into each frame. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

21 | P a g e

 
 

 
If a frame has visible borders, the user can resize it by dragging the border. To prevent a user  from  doing  
this,  you  can  add  noresize="noresize"  to  the  <frame>  tag.  Add  the 
<noframes> tag for browsers that do not support frames. 

 
Important:    You    cannot    use    the    <body></body>    tags    together    with    the 
<frameset></frameset> tags. However, if you add a <noframes> tag containing some text for  browsers  
that  do  not  support  frames,  you  will  have  to  enclose  the  text  in 
<body></body> tags. 

 

Example 1: 
<frameset cols="25%,50%,25%"> 

<frame src="frame_a.htm" noresize="noresize"/> 
<frame src="frame_b.htm"/> 
<frame src="frame_c.htm"/> 

<noframes> 
<body>Your browser does not handle frames!</body> 
</noframes> 
</frameset> 

 

Example 2: 
<frameset rows="25%,50%,25%"> 

<frame src="frame_a.htm"/> 
<frame src="frame_b.htm"/> 
<frame src="frame_c.htm"/> 

</frameset> 
 

Example 3: Mixed Frameset 
<frameset rows="50%,50%"> 

<frame src="frame_a.htm"/> 
<frameset cols="25%,75%"> 

<frame src="frame_b.htm"/> 
<frame src="frame_c.htm"/> 

</frameset> 
</frameset> 

 

 
 
HTML Fonts 

 

The <font> tag in HTML is deprecated. It is supposed to be removed in a future version of 
HTML. For example, 
<p> 

<font size="2" face="Verdana" color = "red"> 
This is a paragraph. 

</font> 
</p> 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

22 | P a g e

HTML Character Entities 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

23 | P a g e

 
 

Character  entities  are  replaced  with  reserved  characters.  A  character  entity  looks 
&entity_name OR &#entity_number. Some commonly used character entities are: 

 

Result Description Entity Name Entity Number 
 non-breaking space &nbsp; &#160; 

< less than &lt; &#60; 

> greater than &gt; &#62; 

& Ampersand &amp; &#38; 

¢ Cent &cent; &#162; 

£ Pound &pound; &#163; 

¥ Yen &yen; &#165; 

€ Euro &euro; &#8364; 

© Copyright &copy; &#169; 

 registered trademark &reg; &#174; 
 
 
 
 

HTML Head 
The head  element  contains general information, also  called  meta-information, about  a 
document. The elements inside the head element should not be displayed by a browser. According to the 
HTML standard, only a few tags are legal inside the head section. These are: <base>, <link>, <meta>, 
<title>, <style>, and <script>. 

 
You must use this element and it should be used just once. It must start immediately after the opening 
<html> tag and end directly before the opening <body> tag. 

 

 
 

HTML Meta 
HTML includes a meta element that goes inside the head element. The purpose of the meta element is to 
provide meta-information about the document. Meta elements are purely used 
for search engine’s use and to provide some additional information about your pages. We 
use three attributes (name, content, and http-equiv) with <meta> tag. 

 
We use name = “keywords” to provide information for a search engine. If the keywords you have chosen 
are the same as the ones they have put in, you come up in the search engine’s result pages. For example, 

 

<meta name="keywords" content="HTML, DHTML, CSS, XML, XHTML, JavaScript" /> 
 
 

We use name = “description” to define a description of your page. It is sort summary of the content of the 
page. Depending on the search engine, this will be displayed along with the title of your page in an index. 
For example, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

24 | P a g e

 
 
<meta  name="description"  content="Free  Web  tutorials  on  HTML,  CSS,  XML,  and 
XHTML" /> 

 
 
We use name = “generator” to define a description for the program you used to write your pages. For 
example, 

 

<meta name="generator" content="Homesite 4.5" /> 
 
 
We use name = “author” and name = “copyright” for author and copyright details. For example, 

 

<meta name="author" content="W3schools" /> 
 

<meta name="copyright" content="W3schools 2005" /> 
 
 
We use name = “expires” to give the browsers a data, after which the page is deleted from the browsers 
cache, and must be downloaded again. This is useful if you want to make sure your visitors are reading the 
most current version of a page. For example, 

 

<meta name="expires" content="13 July 2008" /> 
 
 
We use http-equiv = “expires” to refresh itself to the most current version or change to another location 
(page) entirely after some time. This is useful if you’ve moved a page to a new url and want any visitors to 
the old address to be quietly sent to the new location. For example, 

 

<meta http-equiv = "refresh" content="5;url=http://www.tu.edu.np" /> 
 
 
Here, the number is the number of seconds to wait before changing to the new page. Setting it to 0 
results in an instant redirect. 

 

 
 
HTML Div 
The <div> element defines logical divisions within the document. When you use a <div> 
element, you are indicating that the enclosed content is specific section of the page and you can format the 
section with CSS (Cascading Style Sheet). For example, 

 

<div style="background-color:orange;text-align:center"> 
<p>Navigation section</p> 

</div> 
<div style="border:1px solid black"> 

<p>Content section</p> 
</div> 

 

 
 
HTML Events 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

25 | P a g e

 
 

Events trigger actions in the browser, like starting a JavaScript when a user clicks on an HTML element. 
Below is a list of attributes that can be inserted to HTML tags to define event actions. These HTML events 
are given below: 

 
Window Events (Only valid in body and frameset elements) 

 
Attribute Value Description 

Onload Script Script to be run when a document loads 

Onunload Script Script to be run when a document unloads 
 

Form Element Events (Only valid in form elements) 
 

Attribute Value Description 

Onchange Script Script to be run when the element changes 

Onsubmit Script Script to be run when the form is submitted 

Onreset Script Script to be run when the form is reset 

Onselect script Script to be run when the element is selected 

Onblur script Script to be run when the element loses focus 

Onfocus script Script to be run when the element gets focus 
 

Keyboard Events (Not valid in base, bdo, br, frame, frameset, head, html, iframe, meta, param, script, 
style, and title elements) 

 
Attribute Value Description 

Onkeydown script What to do when key is pressed 

Onkeypress script What to do when key is pressed and released 

Onkeyup script What to do when key is released 
 

Mouse Events (Not valid in base, bdo, br, frame, frameset, head, html, iframe, meta, param, script, 
style, title elements) 

 
Attribute Value Description 

Onclick script What to do on a mouse click 

Ondblclick script What to do on a mouse double-click 

Onmousedown script What to do when mouse button is pressed 

Onmousemove script What to do when mouse pointer moves 

Onmouseout Script What to do when mouse pointer moves out of an 
element 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

26 | P a g e

 
 

Onmouseover Script What to do when mouse pointer moves over an 
element 

Onmouseup script What to do when mouse button is released 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CSS (Cascading Style Sheets) 
CSS stands for cascading style sheets. It was first developed in 1997, as a way for Web developers to  
define the look and feel of their  Web pages. It was intended to allow developers to separate content 
from design and layout so that HTML could perform more of the function without worry about the design 
and layout. It is used to separate style from content. 

 
 

Syntax 
A CSS rule has two main parts: a selector and one or more declarations. Selector is 
normally the HTML element you want to style and each declaration consists of a property 
and value. The property is the style attribute we want to use and each property has a value 
associated with it. 

 
Example: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

27 | P a g e

 
 
p {color:red;text‐align:center;}

Inserting CSS 
We can use style sheets in three different ways in out HTML document. There are external 
style sheet, internal style sheet and inline style. 

 

 
 

External Style Sheet 
If we want to apply the same style to many pages, we use external style sheet. With an 
external style sheet, you can change the look of an entire Web site by changing one style 
sheet file. Each page must link to the style sheet using the <link> tag. The <link> tag goes inside the head 
section. For example, 

 

<head>
<link rel="stylesheet" type="text/css" href="mystyle.css" />
</head>

An external style sheet can be written in any text editor. The file should not contain any html tags. Your 
style sheet should be saved with a .css extension. An example of a style sheet file is shown below: 

 

hr {color:sienna;}
p {margin‐left:20px;} /*Note: Do not leave space between property value and units*/
body {background‐image:url("images/back40.gif");}

Internal Style Sheet 
If you want a unique style to a single document, an internal style sheet should be used. You 
define internal styles in the head section of an HTML page, by using the <style> tag. For 
example, 

 

<head>
<style type="text/css">
hr {color:red;}
p {margin‐left:20px;}
body {background‐image:url("images/back40.gif");}
</style>
</head>

Inline Styles 
If you want a unique style to a single element, an inline style sheet should be used. An 
inline style loses many of the advantages of style sheets by mixing content with presentation. To use inline 
styles you use the style attribute in the relevant tag. The style attribute can contain any CSS property. For 
example, 
<p style="color:yellow;margin‐left:20px">This is a paragraph.</p>



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

28 | P a g e

Comments 
Comments are used to explain your code, and may help you when you edit the source code at a later date. 
Comments are ignored by browsers. A CSS comment begins with "/*", and 
ends with "*/". 

 
 
Id and Class Selectors 
The id selector is used to specify a style for a single, unique element. The id selector uses 
id attribute of the HTML element and is defined with “#”. For example, 

 

<head>
<style type="text/css">
#para1
{
text‐align:center;
color:red;
}
</style>
</head>
<body>
<p id="para1">Hello World!</p>
<p>This paragraph is not affected by the style.</p>
</body>

The class selector is used to specify a style for a group of elements. Unlike the id selector, the class selector 
is most often used on several elements. This allows you to set a particular style for any HTML elements with 
the same class. The class selector uses the HTML class attribute, and is defined with a ".". For example, 

 

<head>
<style type="text/css">
.center
{
text‐align:center;
}
</style>
</head>
<body>
<h1 class="center">Center‐aligned heading</h1>
<p class="center">Center‐aligned paragraph.</p>
</body>



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

29 | P a g e

You can also specify that only specific HTML elements should be affected by a class. For example, 
 

<head>
<style type="text/css">
p.center
{
text‐align:center;
}
</style>
</head>
<body>
<h1 class="center">This heading will not be affected</h1>
<p class="center">This paragraph will be center‐aligned.</p>
</body>

Multiple Styles Will Cascade into One 
 
Styles can be specified: 

 
     inside an HTML element 
     inside the head section of an HTML page 
     in an external CSS file 

 
Tip: Even multiple external style sheets can be referenced inside a single HTML 
document. 

 
Cascading order 

 
What style will be used when there is more than one style specified for an HTML element? 

 
Generally speaking we can say that all the styles will "cascade" into a new "virtual" style sheet by the 
following rules, where number four has the highest priority: 

 
1.   Browser default 
2.   External style sheet 
3.   Internal style sheet (in the head section) 
4.   Inline style (inside an HTML element) 

 
So, an inline style (inside an HTML element) has the highest priority, which means that it will override a 
style defined inside the <head> tag, or in an external style sheet, or in a browser (a default value). 

 
Note: If the link to the external style sheet is placed after the internal style sheet in HTML 
<head>, the external style sheet will override the internal style sheet! 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

30 | P a g e

 
 
 
CSS Background 
Background properties are used to define the background effects of an HTML element. 
CSS properties used to define background effects are: background-color, background- image, 
background-repeat, background-attachment, and background-position. 

 
 
Background Image 

 
The  background-image  property  specifies  an  image  to  use  as  the  background  of  an element. By 
default, the image is repeated so it covers the entire element. 

 
The background image for a page can be set like this: 

 
body {background-image:url('paper.gif');} 

 
Background Image - Repeat Horizontally or Vertically 

 
By default, the background-image property repeats an image both horizontally and vertically. Some images 
should be repeated only horizontally or vertically, or they will look strange, like this: 

 
Example 

 
body 
{ 
background-image:url('gradient2.png'); 
} 

 
If the image is repeated only horizontally (repeat-x), the background will look better: 

 
Example 

 
body 
{ 
background-image:url('gradient2.png'); 
background-repeat:repeat-x; 
} 

 
Background Image - Set position and no-repeat 

 
When using a background image, use an image that does not disturb the text. Showing the image only once 
is specified by the background-repeat property: 

 
Example 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

31 | P a g e

 
 
body 
{ 
background-image:url('img_tree.png'); 
background-repeat:no-repeat; 
} 

 
In the example above, the background image is shown in the same place as the text. We want to change 
the position of the image, so that it does not disturb the text too much. 

 
The position of the image is specified by the background-position property: 

 
Example 

 
body 
{ 
background-image:url('img_tree.png'); background-
repeat:no-repeat; background-position:right top; 
} 

 
 
Shorthand Property 
To shorten the code, it is also possible to specify all the properties in one single property. 
This is called a shorthand property. The shorthand property for background is simply "background". When 
using the shorthand property the order of the property values are: background-color, background-image, 
background-repeat, background-attachment, and background-position. For example, 
body {background:#ffffff url('img_tree.png') no‐repeat right top;}

Grouping Selectors 
 
In style sheets there are often elements with the same style. 

 
h1 
{ 
color:green; 
} 
h2 
{ 
color:green; 
} 
p 
{ 
color:green; 
} 
To minimize the code, you can group selectors. Separate each selector with a comma. In 
the example below we have grouped the selectors from the code above: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

32 | P a g e

 
 

 
Example 
h1,h2,p 
{ 
color:green; 
} 

 
CSS Display and Visibility 

 
The display property specifies if/how an element is displayed, and the visibility property specifies if an 
element should be visible or hidden. 

 
Hiding an Element - display:none or visibility:hidden 

 
Hiding an element can be done by setting the display property to "none" or the visibility property to 
"hidden". However, notice that these two methods produce different results: 

 
visibility: hidden hides an element, but it will still take up the same space as before. The element will be 
hidden, but still affect the layout. 

 
Example 
h1.hidden {visibility:hidden;} 

 
display: none hides an element, and it will not take up any space. The element will be hidden, and the 
page will be displayed as the element is not there: 

 
Example 

 
h1.hidden {display:none;} 

 
 
 

CSS Display - Block and Inline Elements 
 
A block element is an element that takes up the full width available, and has a line break before and after it. 

 
Examples of block elements: 

 
     <h1> 
     <p> 
     <div> 

 
An inline element only takes up as much width as necessary, and does not force line breaks. 

 
Examples of inline elements: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

33 | P a g e

 
 

     <span> 
     <a> 

 
Changing How an Element is Displayed 

 
Changing an inline element to a block element, or vice versa, can be useful for making the page look a 
specific way, and still follow web standards. 

 
The following example displays list items as inline elements: 

 
Example 

 
li {display:inline;} 

 
 
 
The following example displays span elements as block elements: 

 
Example 

 
span {display:block;} 

 
Changing the display type of an element changes only how the element is displayed, NOT what kind of 
element it is. For example: An inline element set to display:block is not allowed to have a block element 
nested inside of it. 

 
CSS Padding Property: 

 
Example 

 
Set the padding of a p element: 

 
p 
{ 
padding:2cm 4cm 3cm 4cm; 
} 

 
Definition and Usage 

 
The padding shorthand property sets all the padding properties in one declaration. This property can have 
from one to four values. 

 
Examples: 

 
     padding:10px 5px 15px 20px; 

o  top padding is 10px 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

34 | P a g e

o  right padding is 5px 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

35 | P a g e

 
 

o  bottom padding is 15px 
o  left padding is 20px 

     padding:10px 5px 15px; 
o  top padding is 10px 
o  right and left padding are 5px 
o  bottom padding is 15px 

     padding:10px 5px; 
o  top and bottom padding are 10px 
o  right and left padding are 5px 

     padding:10px; 
o  all four paddings are 10px 

 
Note: Negative values are not allowed. 

 
CSS Float: 

 
With CSS float, an element can be pushed to the left or right, allowing other elements to wrap around it. 
Float is very often used for images, but it is also useful when working with layouts. 

 
How Elements Float 

 
Elements are floated horizontally; this means that an element can only be floated left or right, not up or 
down. A floated element will move as far to the left or right as it can. Usually this means all the way to 
the left or right of the containing element. The elements after the floating element will flow around it. The 
elements before the floating element will not be affected. If an image is floated to the right, a following text 
flows around it, to the left. 

 
Example 

 
img 
{ 
float:right; 
} 

 
 
 

Floating Elements Next to Each Other 
 
If you place several floating elements after each other, they will float next to each other if there is room. 
Here we have made an image gallery using the float property: 

 
Example 

 
.thumbnail 
{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

36 | P a g e

 
 
float:left; width:110px; 
height:90px; margin:5px; 
} 

 
 
 

Turning off Float - Using Clear 
 
Elements after the floating element will flow around it. To avoid this, use the clear property. 

 
The clear property specifies which sides of an element other floating elements are not allowed. 

 
Add a text line into the image gallery, using the clear property: 

 
Example 

 
.text_line 
{ 
clear:both; 
} 

 
 
 
 

JavaScript 
 

     JavaScript was designed to add interactivity to HTML pages 
     JavaScript is a scripting language 
     A scripting language is a lightweight programming language 
     JavaScript is usually embedded directly into HTML pages 
 JavaScript is an interpreted language (means that scripts execute without preliminary 

compilation) 
     Everyone can use JavaScript without purchasing a license 

 
 
 

Are Java and JavaScript the same? 
NO! Java and JavaScript  are two  completely different  languages in  both concept  and 
design! Java (developed by Sun Microsystems) is a powerful and much more complex programming 
language - in the same category as C and C++. 

 
 
 

What can a JavaScript do? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

37 | P a g e

 
 

 JavaScript gives HTML designers a programming tool - HTML authors are normally  not  
programmers,  but  JavaScript  is a  scripting  language with a  very simple syntax! Almost anyone 
can put small "snippets" of code into their HTML pages 

 JavaScript can put dynamic text into an HTML page - A JavaScript statement like this: 
document.write("<h1>" + name + "</h1>") can write a variable text into an HTML page 

     JavaScript  can  react  to  events  -  A  JavaScript  can  be  set  to  execute  when 
something happens, like when a page has finished loading or when a user clicks on an HTML 
element 

 JavaScript can read and write HTML elements - A JavaScript can read and change the 
content of an HTML element 

 JavaScript can be used to validate data - A JavaScript can be used to validate form data before 
it  is submitted to  a server. This saves the server  from extra 
processing 

     JavaScript can be used to detect the visitor's browser - A JavaScript can be used 
to detect the visitor's browser, and - depending on the browser - load another page specifically 
designed for that browser 

 JavaScript can be used to create cookies - A JavaScript can be used to store and retrieve 
information on the visitor's computer 

 
The Real Name is ECMAScript 

 
     JavaScript's official name is ECMAScript. 
     ECMAScript is developed and maintained by the  ECMA organization. 
     ECMA-262 is the official JavaScript standard. 
     The language was invented by Brendan Eich at Netscape (with Navigator 2.0), and 

has appeared in all Netscape and Microsoft browsers since 1996. 
     The  development  of ECMA-262  started  in  1996,  and  the  first  edition  of was 

adopted by the ECMA General Assembly in June 1997. 
     The standard was approved as an international ISO (ISO/IEC 16262) standard in 

1998. 
     The development of the standard is still in progress. 
     The HTML <script> tag is used to insert a JavaScript into an HTML page. The example 

below shows how to use JavaScript to write text on a web page: 

<html> 
<body> 
<script type="text/javascript"> 
document.write("Hello World!"); 
</script> 
</body> 
</html> 

 
The example below shows how to add HTML tags to the JavaScript: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

38 | P a g e

 
 
<html> 
<body> 
<script type="text/javascript"> 
document.write("<h1>Hello World!</h1>"); 
</script> 
</body> 
</html> 

 
To insert a JavaScript into an HTML page, we use the <script> tag. Inside the <script> tag we use the type 
attribute to define the scripting language. 

 
So, the <script type="text/javascript"> and </script> tells where the JavaScript starts and ends: 

 
<html> 
<body> 
<script type="text/javascript"> 
... 
</script> 
</body> 
</html> 

 
The document.write command is a standard JavaScript command for writing output to a page. 

 
By entering the document.write command between the <script> and </script> tags, the browser will 
recognize it as a JavaScript command and execute the code line. In this case the browser will write Hello 
World! to the page: 

 
<html> 
<body> 
<script type="text/javascript"> 
document.write("Hello World!"); 
</script> 
</body> 
</html> 

 
Note: If we had not entered the <script> tag, the browser would have treated the document.write("Hello 
World!") command as pure text, and just write the entire line on the page. 

 
How to Handle Simple Browsers 
Browsers that  do  not  support  JavaScript,  will  display  JavaScript  as page content.  To prevent them 
from doing this, and as a part of the JavaScript standard, the HTML comment 
tag should be used to "hide" the JavaScript. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

39 | P a g e

 
 
Just add an HTML comment tag <!-- before the first JavaScript statement, and a --> (end of comment) after 
the last JavaScript statement, like this: 

 
<html> 
<body> 
<script type="text/javascript"> 
<!-- 
document.write("Hello World!"); 
//--> 
</script> 
</body> 
</html> 

 
The two forward slashes at the end of comment line (//) is the JavaScript comment symbol. This prevents 
JavaScript from executing the --> tag. 

 
JavaScripts can be put in the body and in the head sections of an HTML page. 

 
 
 

Where to Put the JavaScript 
JavaScripts in a page will be executed immediately while the page loads into the browser. 
This is not always what we want. Sometimes we want to execute a script when a page 
loads, or at a later event, such as when a user clicks a button. When this is the case we put the script inside a 
function, you will learn about functions in a later chapter. 

 

 

Scripts in <head> 
Scripts to be executed when they are called, or when an event is triggered, are placed in functions. Put 
your functions in the head section, this way they are all in one place, and 
they do not interfere with page content. 

 
Example 

 
<html> 
<head> 
<script type="text/javascript"> 
function message() 
{ 
alert("This alert box was called with the onload event"); 
} 
</script> 
</head> 

 
<body onload="message()"> 
</body> 
</html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

40 | P a g e

 
 

Scripts in <body> 
If you don't want your script to be placed inside a function, or if your script should write 
page content, it should be placed in the body section. 

 
Example 

 
<html> 
<head> 
</head> 

 
<body> 
<script type="text/javascript"> 
document.write("This message is written by JavaScript"); 
</script> 
</body> 
</html> 

 
 
 

Scripts in <head> and <body> 
You can place an unlimited number of scripts in your document, so you can have scripts in both the body and 
the head section. 

 
Example 

 
<html> 
<head> 
<script type="text/javascript"> 
function message() 
{ 
alert("This alert box was called with the onload event"); 
} 
</script> 
</head> 

 
<body onload="message()"> 
<script type="text/javascript"> 
document.write("This message is written by JavaScript"); 
</script> 
</body> 

 
</html> 

 
 

Using an External JavaScript 
If you want to run the same JavaScript on several pages, without having to write the same 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

41 | P a g e

script on every page, you can write a JavaScript in an external file. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

42 | P a g e

 
 
Save the external JavaScript file with a .js file extension. 

 
Note: The external script cannot contain the <script></script> tags! 

 
To use the external script, point to the .js file in the "src" attribute of the <script> tag: 

 
<html> 
<head> 
<script type="text/javascript" src="xxx.js"></script> 
</head> 
<body> 
</body> 
</html> 

 
Note: Remember to place the script exactly where you normally would write the script! JavaScript is a 
sequence of statements to be executed by the browser. 

 

 

JavaScript is Case Sensitive 
Unlike HTML, JavaScript is case sensitive - therefore watch your capitalization closely 
when you write JavaScript statements, create or call variables, objects and functions. 

 

 

JavaScript Statements 
A JavaScript statement is a command to a browser. The purpose of the command is to tell the browser what 
to do. 

 
This JavaScript statement tells the browser to write "Hello Dolly" to the web page: 

 
document.write("Hello Dolly"); 

 
It is normal to add a semicolon at the end of each executable statement. Most people think this  is  a good  
programming  practice,  and  most  often  you  will see this  in  JavaScript examples on the web. 

 
The semicolon  is  optional (according  to  the JavaScript  standard),  and  the  browser  is supposed to 
interpret the end of the line as the end of the statement. Because of this you will often see examples 
without the semicolon at the end. 

 
Note: Using semicolons makes it possible to write multiple statements on one line. 

 
JavaScript Code 
JavaScript code (or just JavaScript) is a sequence of JavaScript statements. Each statement 
is executed by the browser in the sequence they are written. Following example will write a heading and two 
paragraphs to a web page: 

 
Example 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

43 | P a g e

 
 
<script type="text/javascript"> document.write("<h1>This is a 
heading</h1>"); document.write("<p>This is a paragraph.</p>"); 
document.write("<p>This is another paragraph.</p>"); 
</script> 

 
JavaScript Blocks 
JavaScript statements can be grouped together in blocks. Blocks start with a left curly 
bracket {, and ends with a right curly bracket }. The purpose of a block is to make the sequence of 
statements execute together.  Following example will write a heading and two paragraphs to a web page: 

 
Example 

 
<script type="text/javascript"> 
{ 
document.write("<h1>This is a heading</h1>"); 
document.write("<p>This is a paragraph.</p>"); 
document.write("<p>This is another paragraph tested at pmc.</p>"); 
} 
</script> 

 
The example above is not very useful. It just demonstrates the use of a block. Normally a block is used to 
group statements together in a function or in a condition (where a group of statements should be executed if a 
condition is met). 

 
JavaScript Variables 
As with algebra, JavaScript variables are used to hold values or expressions. A variable can have a short 
name, like x, or a more descriptive name, like carname. 

 
Rules for JavaScript variable names: 

     Variable names are case sensitive (y and Y are two different variables) 
     Variable names must begin with a letter or the underscore character 

 
Note: Because JavaScript is case-sensitive, variable names are case-sensitive. 

 
Declaring (Creating) JavaScript Variables 
Creating variables in JavaScript is most often referred to as "declaring" variables. You can 
declare JavaScript variables with the var statement: 
var x; 
var carname; 

 
After the declaration shown above, the variables are empty (they have no values yet). However, you can 
also assign values to the variables when you declare them: 

 
var x=5; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

44 | P a g e

 
 

var carname="Volvo"; 
 

After the execution of the statements above, the variable x will hold the value 5, and 
carname will hold the value Volvo. 

 
Note: When you assign a text value to a variable, use quotes around the value. 

 

 

Assigning Values to Undeclared JavaScript Variables 
If  you  assign  values  to  variables  that  have  not  yet  been  declared,  the  variables  will 
automatically be declared. These statements: 

x=5; 
carname="Volvo"; 

 
have the same effect as: 

 
var x=5; 
var carname="Volvo"; 

 

 

Redeclaring JavaScript Variables 
If you redeclare a JavaScript variable, it will not lose its original value. 
var x=5; 
var x; 

 
After the execution of the statements above, the variable x will still have the value of 5. The value of x is 
not reset (or cleared) when you redeclare it. 

 
JavaScript Arithmetic 
As with algebra, you can do arithmetic operations with JavaScript variables: 
y=x-5; 
z=y+5; 

 

 

Comparison Operators 
Comparison operators are used in logical statements to determine equality or difference between variables 
or values. 

 
Given that x=5, the table below explains the comparison operators: 

 
Operator Description Example 
= = is equal to x==8 is false 
= = = is exactly equal to (value and type) x===5 is true 

x==="5" is false 
!= is not equal x!=8 is true 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

45 | P a g e

 
 
> is greater than x>8 is false 
< is less than x<8 is true 
>= is greater than or equal to x>=8 is false 
<= is less than or equal to x<=8 is true 

 
Logical Operators 
Logical operators are used to determine the logic between variables or values. Given that 
x=6 and y=3, the table below explains the logical operators: 
Operator Description Example 
&& And (x < 10 && y > 1) is true 
|| Or (x==5 || y==5) is false 
! Not !(x==y) is true 

 
 
 
 
 
 
 
Conditional Operator 
JavaScript also contains a conditional operator that assigns a value to a variable based on some condition. 

 
Syntax 

variablename=(condition)?value1:value2 
 

Example 

greeting=(visitor=="PRES")?"Dear President ":"Dear "; 
 

If the variable visitor has the value of "PRES", then the variable greeting will be assigned the value "Dear 
President " else it will be assigned "Dear". 

 
Flow Control 

 

• Conditional statements are used to perform different actions based on different conditions. 

•    In JavaScript we have the following conditional statements: 
 

• if statement - use this statement to execute some code only if a specified condition is true 

• if...else statement - use this statement to execute some code if the condition is true and another code 

if the condition is false 

• if...else if....else statement - use this statement to select one of many blocks of code to be executed 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

46 | P a g e

 
 

• switch statement - use this statement to select one of many blocks of code to be executed 

 
 
Looping Structures 

 

• Often when you write code, you want the same block of code to run over and over again in a row. 

Instead of adding several almost equal lines in a script we can use loops to perform a task like this. 

•    In JavaScript, there are two different kind of loops: 
 

•    for - loops through a block of code a specified number of times 
 

•    while - loops through a block of code while a specified condition is true 
 
 
 
The for Loop 

• The for loop is used when you know in advance how many times the script should run. 
 

Syntax 
 

for (var=startvalue;var<=endvalue;var=var+increment) 
 

{ 
 

code to be executed 
 

} 
 
 
 
Example 

 

<html> 
 

<body> 
 

<script type="text/javascript"> 
 

var i=0; 
 

for (i=0;i<=5;i++) 
 

{ 
 

document.write("The number is " + i); 
 

document.write("<br />"); 
 

} 
 

</script> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

47 | P a g e

 
 

</body> 
 

</html> 
 
 
 

JavaScript While Loop 
 

•    The while loop loops through a block of code while a specified condition is true. 
 

Syntax 
 

•    while (var<=endvalue) 
 

{ 
 

code to be executed 
 

} 
 

Example 
 

<html> 
 

<body> 
 

<script type="text/javascript"> 
 

var i=0; 
 

while (i<=5) 
 

{ 
 

document.write("The number is " + i); 
 

document.write("<br />"); 
 

i++; 
 

} 
 

</script> 
 

</body> 
 

</html> 
 

Javascript do while loop 
 
 

The do...while loop is a variant of the while loop. This loop will execute the block of code ONCE, and 

then it will repeat the loop as long as the specified condition is true. Syntax 

do 
 

{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

48 | P a g e

 
 

code to be executed 
 

} 
 

while (var<=endvalue); 
 
 
 

Example 
 

The example below uses a do...while loop. The do...while loop will always be executed at least once, even 

if the condition is false, because the statements are executed before the condition is tested: 

<html> 
 

<body> 
 

<script type="text/javascript"> 
 

var i=0; 
 

do 
 

{ 
 

document.write("The number is " + i); 
 

document.write("<br />"); 
 

i++; 
 

} 
 

while (i<=5); 
 

</script> 
 

</body> 
 

</html> 
 
 
 

The Break Statement 
 

The break statement will break the loop and continue executing the code that follows after the loop (if any). 

<html> 
 

<body> 
 

<script type="text/javascript"> 
 

var i=0; 
 

for (i=0;i<=10;i++) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

49 | P a g e

 
 

{ 
 

if (i==3) 
 

{ 
 

break; 
 

} 
 

document.write("The number is " + i); 
 

document.write("<br />"); 
 

} 
 

</script> 
 

</body> 
 

</html> 
 
 
 

Javascript for ….. in statement 
 
 

The for...in statement loops through the elements of an array or through the properties of an object. 

 
 

Syntax 
 

for (variable in object) 
 

{ 
 

code to be executed 
 

} 
 

Note: The code in the body of the for...in loop is executed once for each element/property. 
 
 
 
Example: Use the for...in statement to loop through an array: 

 

<html> 
 

<body> 
 

<script type="text/javascript"> 
 

var x; 
 

var mycars = new Array(); 
 

mycars[0] = "Saab"; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

50 | P a g e

 
 

mycars[1] = "Volvo"; mycars[2] = 

"BMW"; for (x in mycars) 

{ 
 

document.write(mycars[x] + "<br />"); 
 

} 
 

</script> 
 

</body> 
 

</html> 
 
 
 

Functions 
 

• A function is simply a block of code with a name, which allows the block of code to be called by 

other components in the scripts to perform certain tasks. 

•    Functions can also accept parameters that they use complete their task. 
 

• JavaScript actually comes with a number of built-in functions   to accomplish a variety of tasks. 

 
 
Creating Custom Functions 

 

• In addition to using the functions provided by javaScript, you can also create and use your own 

functions. 

•    General syntax for creating a function in JavaScript is as follows: 
 

function name_of_function(argument1,argument2,…arguments) 
 

{ 
 

………………………………………… 
 

//Block of Code 
 

………………………………………… 
 

} 
 
 
 

Calling functions 
 

• There are two common ways to call a function: From an event handler and from another function. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

51 | P a g e

 
 

• Calling a function is simple. You have to specify its name followed by the pair of parenthesis. 

<SCRIPT  TYPE="TEXT/JAVASCRIPT"> 
 

name_of_function(argument1,argument2,…arguments) 
 

</SCRIPT> 
 
 
 

Example 
 

 

<html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

52 | P a g e

 
 
<head> <title>PMC</title> 
 

<Script Language="JavaScript"> 
 

function welcomeMessage() 
 

{ 
 

document.write("Welcome to Patan Campus!"); 
 

} 
 

</Script> 
 

</head> 
 

<body> 
 

<h1>Patan Multiple Campus CSIT</h1> 
 

<h3>Testing the function in PMC</h3> 
 

<Script Language="JavaScript"> 
 

welcomeMessage(); 
 

</Script> 
 

</body> 
 

</html> 
 
 
 

Popup Boxes 
 
 

Alert Box: 
 

An alert box is often used if you want to make sure information comes through to the user. When an alert box 

pops up, the user will have to click "OK" to proceed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

53 | P a g e

 
 
Syntax 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

54 | P a g e

 
 
alert("sometext"); 
 

 
 

Example 
 

<html> 
 

<head> 
 

<script type="text/javascript"> 
 

function show_alert() 
 

{ 
 

alert("I am an alert box!"); 
 

} 
 

</script> 
 

</head> 
 

<body> 
 

<input type="button" onclick="show_alert()" value="Show alert box" /> 
 

</body> 
 

</html> 
 
 
Confirmation Box: 

A confirm box is often used if you want the user to verify or accept something. When a confirm box pops up, 

the user will have to click either "OK" or "Cancel" to proceed.  If the user clicks "OK", the box returns true. If 

the user clicks "Cancel", the box returns false. 
 

 
 

Syntax 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

55 | P a g e

 
 
confirm("sometext"); 
 

 
 

Example 
 

<html> 
 

<head> 
 

<script type="text/javascript"> 
 

function show_confirm() 
 

{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

56 | P a g e

 
 

var r=confirm("Press a button"); 
 

if (r==true) 
 

{ 
 

document.write("You pressed OK!"); 
 

} 
 

else 
 

{ 
 

document.write("You pressed Cancel!"); 
 

} 
 

} 
 

</script> 
 

</head> 
 

<body> 
 

<input  type="button"  onclick="show_confirm()"  value="Show  confirm  box"  /> 
 

</body> 
 

</html> 
 
 
Prompt Box: 
A prompt box is often used if you want the user to input a value before entering a page. 

When a prompt box pops up, the user will have to click either "OK" or "Cancel" to proceed after entering an 

input value.  If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the box 

returns null. 
 
 

Syntax 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

57 | P a g e

 

 
prompt("sometext","defaultvalue"); 
 
 

Example 
 

<html> 
 

<head> 
 

<script type="text/javascript"> 
 

var name=prompt("Please enter your name",“Rajendra"); 
 

</script> 
 

</head> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

58 | P a g e

 
 

<body> 
 

<script type="text/javascript"> 
 

document.write("Hello  "+name + "You have worked will with variables"); 
 

</script> 
 

</body> 
 

</html> 
 
 
 
JavaScript objects 

 

 
 

JavaScript is an Object Oriented Programming (OOP) language. An OOP language allows you to define your 

own objects and make your own variable types. An object is just a special kind of data. An object has 

properties and methods. 

 
 
Properties: Properties are the values associated with an object. 

 

Methods: Methods are the actions that can be performed on objects. 
 
 
 
Array Object in JavaScript 

 

 
 

An array is a special variable, which can hold more than one value, at a time. An array can hold all your 

variable values under a single name. And you can access the values by referring to the array name. Each 

element in the array has its own ID so that it can be easily accessed. The following code creates an Array 

object called myCars: 

 
 
var myCars=new Array(); 

 

There are three ways of adding values to an array (you can add as many values as you need to define as many 

variables you require). 

 
1.)  Conventional array: The classic conventional array looks like the following: 

 
var myCars=new Array(); 

 

myCars[0]="Saab"; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

59 | P a g e

 
 

myCars[1]="Volvo"; 
 

myCars[2]="BMW"; 
 
 
 
You can expand and contract the array as desired, by adding new array elements. Note that like in most other 

programming languages, the first array element should have an index number of 0. 

 
 
With a conventional array,  you  have the option of presetting the array's length when defining it, by 

passing in a numeric integer into the Array() constructor: 

var myCars=new Array(3); 

myCars[0]="Saab"; myCars[1]="Volvo"; 

myCars[2]="BMW"; 

 
2.) Condensed array: The second way of defining an array is called a condensed array, and  differs  from  

the  above  simply  in  that  it  allows  you  to  combine  the  array  and array elements definitions into one 

step: 

 
var myCars=new Array("Saab","Volvo","BMW"); 

 
 
This is convinient if you know all the array element values in advance. 

 
 
3.)  Literal  array:  Finally,  we  arrive  at  literal  arrays.  Introduced  in  JavaScript1.2 and    support    

by    all    modern    browsers    (IE/NS4+),    literal    arrays    sacrafice intuitiveness  somewhat  in  

exchange  for  tremendous  robustness.  The  syntax  looks 

like: 
 

var myCars=["Saab","Volvo","BMW"]; 
 
 
Literal array with 5 elements (middle 3 with undefined values). var 

mystudents=["giri", , , "tulsi"] 
 
As you can see, enclose all the array elements within an outter square bracket ([ ]), each separated by a 

comma (,). To create array elements with an initial undefined value just enter a comma (,) as shown in the 

second example above. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

60 | P a g e

 
 
Literal arrays really shine when it comes to defining mult i-dimensional arrays. It is as easy as adding 

containing brackets ([ ]) within the outermost bracket. For example: 

 
var myarray=[["Subash", "Pandey", "Gautam"], Kalanki, Sanepa] 

 
 
Here the first array element is actually a two dimensional array in itself containing various cities names. To 

access LA, then, you'd use the syntax: 

 
myarray[0][1] //returns "Pandey" 

 

 
 
Note: If you specify numbers or true/false values inside the array then the type of variables will be numeric or 

Boolean instead of string. 

 
 
Accessing the Array 

 

 
 

You can refer to a particular element in an array by referring to the name of the array and the index number. 

The index number starts at 0. In above initialized array, the code line document.write(myCars[0]);  will result 

in the following output: Saab 

 
 
To modify a value in an existing array, just add a new value to the array with a specified index number: 

myCars[0]="Opel"; Now, the following 

code line: 

document.write(myCars[0]); will result in the following output: Opel. 
 
 
 
Some methods associated with array 

 

 
 

•    concat( ):  Joins two or more arrays, and returns a copy of the joined arrays 
 

•    join( ):  Joins all elements of an array into a string 
 

•    pop( ):  Removes the last element of an array, and returns that element 
 

•    push( ):  Adds new elements to the end of an array, and returns the new length 
 

•    reverse( ):  Reverses the order of the elements in an array 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

61 | P a g e

 
 

•    shift( ):  Removes the first element of an array, and returns that element 
 

•    sort( ):  Sorts the elements of an array 
 

•    toString( ):  Converts an array to a string, and returns the result 
 

• unshift( ):  Adds new elements to the beginning of an array, and returns the new length 

 
 
Example 

 

Concat( ) : Joining Two Arrays 
 

 
 

<script type="text/javascript"> 
 

var parents = ["Giri", "Pari"]; 
 

var children = ["Cactus", "Rose"]; 
 

var family = parents.concat(children); 
 

document.write(family); 
 

</script> 
 
 
 
The output will be : 

 

Giri, Pari, Cactus, Rose 
 
 
String Object in JavaScript 

 

 
 

The String object is used to manipulate a stored piece of text. String objects are created 
 

with new String(). 
 

 
 

Syntax 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

62 | P a g e

 
 
var txt = new String(string);or more simply: 
 

var txt = string; 
 

 
 

Some methods associated with String object: 
 

    toLowerCase( ): Converts a string to lowercase letters 
 

    toUpperCase( ):  Converts a string to uppercase letters 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

63 | P a g e

 
 

    concat( ):  Joins two or more strings, and returns a copy of the joined strings 
 

    charAt( ): Returns the character at the specified index 
 

 indexOf( ): Returns the position of the first found occurrence of a specified value in a string 

 replace( ): Searches for a match between a substring (or regular expression) and a string, and replaces 

the matched substring with a new substring 

 
 
Examples 

 
 
 
In the following example we are using the length property of the String object to return the number of 

characters in a string: 

 
 

<script type="text/javascript"> var txt="Hello 

World!"; document.write(txt.length); 

</script> 
 

The output of the code above will be: 12 
 

In the following example we are using the toUpperCase( ) method of the String object to display a text in 

uppercase letters: 

 
 

<script type="text/javascript"> var str="hello its me 

webtech!"; document.write(str.toUpperCase()); 

</script> 
 

The output of the code above will be: HELLO ITS ME 

WEBTECH 

 
 
Example: IndexOf ( ) method 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

64 | P a g e

 
 
The indexOf( ) method returns the position of the first occurrence of a specified value in a string. This 

method returns -1 if the value to search for never occurs. The indexOf( ) method is case sensitive. 

 
Syntax 

 

string.indexOf(searchstring, start) 
 
 
 
searchstring: Required. The string to search for. 

 

start:  Optional. The start position in the string to start the search. If omitted, the search starts from 

position 0 

 
 
<script type="text/javascript"> var str="Patan world!"; 

document.write(str.indexOf("d") + "<br />"); 

document.write(str.indexOf("WORLD") + "<br />"); 

document.write(str.indexOf("world")); 

 
 
</script> 

 
 
 
Output 

 

10 
 

-1 
 

6 
 
 
 
Math Object in Javascript 

 

 
 

The Math object allows you to perform mathematical tasks. The Math object includes several 

mathematical constants and methods. For example 

var pi_value=Math.PI; 
 

var sqrt_value=Math.sqrt(16); 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

65 | P a g e

 
 
Note: Math is not a constructor. All properties and methods of Math can be called by using 

 

Math as an object without creating it. 
 
 
 
Properties 

 

 
 

•    Math.E: Returns Euler's number (approx. 2.718) 
 

•    Math.LN2:  Returns the natural logarithm of 2 (approx. 0.693) 
 

•    Math.LN10:  Returns the natural logarithm of 10 (approx. 2.302) 
 

•    Math.LOG2E:  Returns the base-2 logarithm of E (approx. 1.442) 
 

•    Math.LOG10E:  Returns the base-10 logarithm of E (approx. 0.434) 
 

•    Math.PI:  Returns PI (approx. 3.14159) 
 

•    Math.SQRT1_2: Returns the square root of 1/2 (approx. 0.707) 
 

•    Math.SQRT2:  Returns the square root of 2 (approx. 1.414) 
 
 
 
Methods 

 

 
 

•    abs(x): Returns the absolute value of x 
 

•    ceil(x): Returns x, rounded upwards to the nearest integer 
 

•    floor(x): Returns x, rounded downwards to the nearest integer 
 

•    log(x): Returns the natural logarithm (base E) of x 
 

•    max(x,y,z,...,n): Returns the number with the highest value 
 

•    min(x,y,z,...,n):  Returns the number with the lowest value 
 

•    pow(x,y):  Returns the value of x to the power of y 
 

•    sqrt(x):  Returns the square root of x 
 

•    random( ):  Returns a random number between 0 and 1 
 

•    round(x):  Rounds x to the nearest integer 
 

•    sin(x):  Returns the sine of x (x is in radians) 
 

•    cos(x):  Returns the cosine of x (x is in radians) 
 

•    tan(x):  Returns the tangent of an angle 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

66 | P a g e

Examples 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

67 | P a g e

 
 

document.write(Math.round(4.7)); Output: 5 

 
 

document.write(Math.random()); Output: 

0.19733826867061233 

 
 

document.write(Math.floor(Math.random()*6)); Output: 3 

 
 
Date Object in Javascript 

 

 
 

The Date object is used to work with dates and times. Date objects are created with the Date( ) constructor. 

We can easily manipulate the date by using the methods available for the Date object. In the example below 

we set a Date object to a specific date (14th January 

2010): 
 

var myDate=new Date(); 
 

myDate.setFullYear(2010,0,14); 
 
 
 
And in the following example we set a Date object to be 5 days into the future: 

 

var myDate=new Date(); 
 

myDate.setDate(myDate.getDate()+5); 
 
 
 

Note: If adding five days to a date shifts the month or year, the changes are handled automatically by 

the Date object itself! 

 
 
Methods 

 

     getDate() Returns the day of the month (from 1-31) 
 

     getDay() Returns the day of the week (from 0-6) 
 

     getFullYear() Returns the year (four digits) 
 

      getHours() Returns the hour (from 0-23) 
 

      getMilliseconds() Returns the milliseconds (from 0-999) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

68 | P a g e

 
 

     getMinutes() Returns the minutes (from 0-59) 
 

     getMonth() Returns the month (from 0-11) 
 

     getSeconds() Returns the seconds (from 0-59) 
 

     setDate() Sets the day of the month (from 1-31) 
 

     setFullYear() Sets the year (four digits) 
 

     setHours() Sets the hour (from 0-23) 
 

     setMilliseconds() Sets the milliseconds (from 0-999) 
 

     setMinutes() Set the minutes (from 0-59) 
 

     setMonth() Sets the month (from 0-11) 
 

     setSeconds() Sets the seconds (from 0-59) 
 

     toString() Converts a Date object to a string 
 
 
 
Examples 

 

 
 

The Date object is also used to compare two dates.  The following example compares today's date with 

the 14th January 2010: 

var myDate=new Date(); 

myDate.setFullYear(2010,0,14); var today = new 

Date(); 

if (myDate>today) 
 

{ 
 

alert("Today is before 15th December 2011"); 
 

} 
 

else 
 

{ 
 

alert("Today is after 15th January 2011"); 
 

} 
 
 
 

Examples 
 

<html> 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

69 | P a g e

<head> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

70 | P a g e

 
 

<script type="text/javascript"> 
 

function displayDate() 
 

{ 
 

document.getElementById("demo").innerHTML=Date(); 
 

} 
 

</script> 
 

</head> 
 

<body> 
 
 
 

<h1>My First Web Page</h1> 
 

<p id="demo">This is a paragraph.</p> 
 
 
 

<button type="button" onclick="displayDate()">Display Date</button> 
 
 
 

</body> 
 

</html> 
 

 
 
 
 

<html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

71 | P a g e

 
 
<body> 
 

<script type="text/javascript"> var d=new Date(); 

document.write(d); 

</script> 
 

</body> 
 

</html> 
 
 
 
Example: Displaying the clock 

 

<html> 
 

<head> 
 

<script type="text/javascript"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

72 | P a g e

 
 

function startTime() 
 

{ 
 

var today=new Date(); var 

h=today.getHours(); var 

m=today.getMinutes(); var 

s=today.getSeconds(); 

// add a zero in front of numbers<10 
 

//m=checkTime(m); 
 

//s=checkTime(s); document.getElementById('txt').innerHTML=h+":"+m+":"+s; 

t=setTimeout('startTime()',1000); 

} 
 
 
 

//to concat 0 if i is not double digit 
 

/*function checkTime(i) 
 

{ 
 

if (i<10) 
 

{ 
 

i="0" + i; 
 

} 
 

return i; 
 

} */ 
 

</script> 
 

</head> 
 

<body onload="startTime()"> 
 

<div id="txt"></div> 
 

</body> 
 

</html> 
 
 
With JavaScript, it is possible to execute some code after a specified time-interval. This is called timing 
events It's very easy to time events in JavaScript. The two key methods that are used are: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

73 | P a g e

 
 

     setTimeout() - executes a code some time in the future 
     clearTimeout() - cancels the setTimeout() 

 
Note: The setTimeout() and clearTimeout() are both methods of the HTML DOM Window object. 

 
The setTimeout() method returns a value. In the syntax defined above, the value is stored in a variable called 
t. If you want to cancel the setTimeout() function, you can refer to it using the variable name. The first 
parameter of setTimeout() can be a string of executable code, or a call to a function. The second parameter 
indicates how many milliseconds from now you want to execute the first parameter. 

 
Note: There are 1000 milliseconds in one second. 

 
In above example the function startTime( ) get executed after each second, showing the content of div tag 

getting refreshed each time so as to display the clock. 

 
 
User defined objects in JavaScript: 

 
 

We have seen that JavaScript has several built-in objects, like String, Date, Array, and more. In addition 
to these built-in objects, you can also create your own. 

 
An object is just a special kind of data, with a collection of properties and methods. 

 
Let's illustrate with an example: A person is an object. Properties are the values associated with the object. 
The persons' properties include name, height, weight, age, skin tone, eye color, etc. All persons have these 
properties, but the values of those properties will differ from person to person. Objects also have methods. 
Methods are the actions that can be performed on objects. The persons' methods could be eat(), sleep(), 
work(), play(), etc. 

 
The syntax for accessing a property of an object is: 

 
objName.propName 

 
 
 
You can call a method with the following syntax: 

 
objName.methodName() 

 
 
Note: Parameters required for the method can be passed between the parentheses. There are 

different ways to create a new object: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

74 | P a g e

 
 
1. Create a direct instance of an object 

 
The following code creates an new instance of an object, and adds four properties to it: 

 
personObj=new Object(); 
personObj.firstname="Jyoti"; 
personObj.lastname="Joshi"; 
personObj.age=25; 
personObj.eyecolor="black"; 

 
alternative syntax (using object literals): 

 
personObj={firstname:"Jyoti", lastname:"Joshi", age:25, eyecolor:"black"}; 

 
Adding a method to the personObj is also simple. The following code adds a method called eat() to the 
personObj: 

 
personObj.eat=eat; 

 
 
function eat( ) 

 

{ 
 

// code for the function 
 

} 
 
 
 
 
 
 
2. Create an object constructor 

 
Create a function that constructs objects: 

 
function person(firstname,lastname,age,eyecolor) 
{ 
this.firstname=firstname; 
this.lastname=lastname; this.age=age; 
this.eyecolor=eyecolor; 
} 

 
Inside the function you need to assign things to this.propertyName. The reason for all t he "this" stuff is 
that you're going to have more than one person at a time (which person you're dealing with must be 
clear). That's what "this" is: the instance of the object at hand. 

 
Once you have the object constructor, you can create new instances of the object, like this: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

75 | P a g e

 
 
var myFather=new person("Ramesh","Joshi",50,"black"); 
var myMother=new person("Gita","Joshi",48,"blue"); 

 
You can also add some methods to the person object. This is also done inside the function: 

 
function person(firstname,lastname,age,eyecolor) 
{ this.firstname=firstname; 
this.lastname=lastname; this.age=age; 
this.eyecolor=eyecolor; 

 
this.newlastname=newlastname; 
} 

 
Note that methods are just functions attached to objects. Then we will have to write the newlastname( ) 
function: 

 
function newlastname(new_lastname) 
{ 
this.lastname=new_lastname; 
} 

 
The newlastname( ) function defines the person's new last name and assigns that to the person. JavaScript 
knows which person you're talking about by using "this." . So, now you can write: 
myMother.newlastname("Joshi"). 

 
 

 
Example: Creating a circle object 

 

<html> 
 

<head> 
 

<script type="text/javascript"> 
 

// mycircle object defined function 

mycircle(r) { this.radius = r; 

this.retArea = getTheArea; 
 

} 
 

function getTheArea( ) 
 

{ 
 

return ( Math.PI * this.radius * this.radius ); 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

76 | P a g e

 
 

} 
 

function createcircle ( ) 
 

{ 
 

//create a mycircle called testcircle wtih radius 10 var testcircle = 

new mycircle(10); 

window.alert( 'The area of the circle is ' + testcircle.retArea ); 
 

} 
 

</script> 
 

</head> 
 
 
 

<body onLoad="createcircle()"> </body> 
 

</html> 
 
 
 
 
 
 
 
 
 
 
 
 
 
HTML Document Object Model 

 

 
 

The Document Object Model is a platform- and language-neutral interface that will allow programs and 
scripts to dynamically access and update the content, structure and style of documents. The document can be 
further processed and the results of that processing can be incorporated back into the presented page. DOM 
provides a language-independent, object-based model for accessing / modifying and adding to these tags. 

 
The HTML DOM defines a standard set of objects for HTML, and a standard way to access  and  
manipulate  HTML  documents.     All  HTML  elements,  along  with  their containing text and attributes, 
can be accessed through the DOM.   The contents can be modified or deleted, and new elements can be 
created.  The HTML DOM is platform and language independent.  It can be used by any programming 
language like Java, JavaScript, and VBScript. 

 
When an HTML page is rendered in a browser, the browser assembles all the elements (objects)  that  are  
contained  in  the  HTML  page,  downloaded  from  web-server  in  its memory. Once done the browser then 
renders these objects in the browser window as text, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

77 | P a g e

 
 
forms, input boxes, etc. Once the HTML page is rendered in web-browser window, the browser can no longer 
recognize individual HTML elements (Objects). 

 
Since the JavaScript enabled browser uses the Document Object Model (DOM), after the page has been 
rendered, JavaScript enabled browsers are capable of recognizing individual objects in an HTML page. 

 
The HTML objects, which belong to the DOM, have a descending relationship with each other. 

 
The topmost object in the DOM is the Navigator (i.e. Browser) itself. The next level in the DOM is the 
browser's Window, and under that are the Documents displayed in Browser's Window. 

 
DOM 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

78 | P a g e

 
|-> Window 

|-> Document 
|-> Anchor 
|-> Link 
|-> Form 

|-> Text-box 
|-> Text Area 
|-> Radio Button 
|-> Check Box 
|-> Select 
|-> Button 

 
………. 

 
 
 
 

 
 

Fig: HTML DOM Tree Example 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

79 | P a g e

 
 

The Form Object: 
 
The Form object represents an HTML form. For each <form> tag in an HTML document, a Form object is 
created. Forms are used to collect user input, and contain input elements like text  fields, checkboxes, radio-
buttons, submit  buttons and  more. A form can also contain select menus, textarea, fieldset, legend, and 
label elements. Forms are used to pass data to a server. 

 
Form Object Collections 

 

 
Collection          Description 
elements[]          Returns an array of all elements in a form 

 

 
Form Object Properties 

 

 
Property             Description 
acceptCharset      Sets or returns the value of the accept-charset attribute in a form action                   

Sets or returns the value of the action attribute in a form 

enctype                Sets or returns the value of the enctype attribute in a form length                  

Returns the number of elements in a form 

method                Sets or returns the value of the method attribute in a form name                    

Sets or returns the value of the name attribute in a form target                   Sets or returns the 

value of the target attribute in a form 
 

 
 
 
 
 
 
 
Form Object Methods 

 

 
Method Description reset()    Resets a 

form submit() Submits a form 

 
Form Object Events 

 

 
Event     The event occurs when... onreset    The reset 

button is clicked onsubmit The submit button is clicked 

 
Form Method Property 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

80 | P a g e

 
 
The method property sets or returns the value of the method attribute in a form. The method  attribute  
specifies  how  to  send  form-data  (the  form-data  is  sent  to  the  page specified in the action attribute). 

 
formObject.method=value 

 
The method property can have one of the following values: 

 

 
Value            Description 

 

get                 
Appends the form-data to the URL: URL?name=value&name=value (this is default) 

post               Sends the form-data as an HTTP post transaction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RegExp Object: 

 
A regular expression is an object that describes a pattern of characters. When you search in a text, you can 
use a pattern to describe what you are searching for. A simple pattern can be one single character. A more 
complicated pattern can consist of more characters, and can be used for parsing, format checking, 
substitution and more. 

 
Regular  expressions  are  used  to  perform  powerful  pattern-matching  and  "search-and- replace" functions 
on text. 

 
Syntax 

 
var patt=new RegExp(pattern,modifiers); 

 
or more simply: 

 
var patt=/pattern/modifiers; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

81 | P a g e

 
 

     pattern specifies the pattern of an expression 
     modifiers specify if a search should be global, case-sensitive, etc. 

 
Modifiers:  Modifiers  are  used  to  perform case-insensitive  and  global  searches.  The  i modifier is used 
to perform case-insensitive matching. The g modifier is used to perform a global match (find all matches 
rather than stopping after the first match). 

 
For example: 

 
<html> 
<body> 

 
<script type="text/javascript"> var str = "Visit 
W3Schools"; var patt1 = /w3schools/i; 
document.write(str.match(patt1)); 
</script> 

 
</body> 
</html> 

 
The output: W3Schools 

 
 
 
 
<html> 
<body> 

 
<script type="text/javascript"> 

 
var str="Is this all there is?"; var patt1=/is/g; 
document.write(str.match(patt1)); 

 
</script> 

 
</body> 
</html> 

 
The output : is, is 

 
<html> 
<body> 

 
<script type="text/javascript"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

82 | P a g e

 
 
var str="Is this all there is?"; var patt1=/is/gi; 
document.write(str.match(patt1)); 

 
</script> 

 
</body> 
</html> 

 
The output : Is,is,is 

 
 
 
test() 

 
The  test()  method  searches  a  string  for  a  specified  value,  and  returns  true  or  false, depending on the 
result. The following example searches a string for the character "e": 

 
<html> 
<body> 

 
<script type="text/javascript"> 
var patt1=new RegExp("e"); 

 
document.write(patt1.test("The best things in life are free")); 
</script> 

 
</body> 
</html> 

 
exec() 

 
The exec() method searches a string for a specified value, and returns the text of the found value. If no match 
is found, it returns null. The following example searches a string for the character "e": 

 
<html> 
<body> 

 
<script type="text/javascript"> 
var patt1=new RegExp("e"); 

 
document.write(patt1.exec("The best things in life are free")); 
</script> 

 
</body> 
</html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

83 | P a g e

 
 

 
A caret (^) at the beginning of a regular expression indicates that the string being searched must start with 
this pattern. 

 
     The pattern ^foo can be found in "food", but not in "barfood". 

 
A dollar sign ($) at the end of a regular expression indicates that the string being searched must end with this 
pattern. 

 
     The pattern foo$ can be found in "curfoo", but not in "food" 

 
Number of Occurrences ( ? + * {} ) 

 
The following symbols affect the number of occurrences of the preceding character: ?, +, 
*, and {}. 

 
A questionmark (?) indicates that the preceding character should appear zero or one times in the pattern. 

 
     The pattern foo? can be found in "food" and "fod", but not "faod". 

 
A plus sign (+) indicates that the preceding character should appear one or more times in the pattern. 

 
     The pattern fo+ can be found in "fod", "food" and "foood", but not "fd". 

 
A asterisk (*) indicates that the preceding character should appear zero or more times in the pattern. 

 
     The pattern fo*d can be found in "fd", "fod" and "food". 

 
Curly brackets with one parameter ( {n} ) indicate that the preceding character should appear exactly n 
times in the pattern. 

 
     The pattern fo{3}d can be found in "foood" , but not "food" or "fooood". 

 
Curly brackets with two parameters ( {n1,n2} ) indicate that the preceding character should appear between 
n1 and n2 times in the pattern. 

 
     The pattern fo{2,4}d can be found in "food","foood" and "fooood", but not "fod" or 

"foooood". 
 
Curly brackets with one parameter and an empty second paramenter ( {n,} ) indicate that the preceding 
character should appear at least n times in the pattern. 

 
     The pattern fo{2,}d can be found in "food" and "foooood", but not "fod". 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

84 | P a g e

 
 
Common Characters ( . \d \D \w \W \s \S ) 

 
A period ( . ) represents any character except a newline. 

 
     The pattern fo.d can be found in "food", "foad", "fo9d", and "fo*d". Backslash-d ( \d ) 

represents any digit. It is the equivalent of [0-9]. 

     The pattern fo\dd can be found in "fo1d", "fo4d" and "fo0d", but not in "food" or 
"fodd". 

 
Backslash-D ( \D ) represents any character except a digit. It is the equivalent of [^0-9]. 

 
     The pattern fo\Dd can be found in "food" and "foad", but not in "fo4d". 

 
Backslash-w ( \w ) represents any word character (letters, digits, and the underscore (_) ). 

 
     The pattern fo\wd can be found in "food", "fo_d" and "fo4d", but not in "fo*d". Backslash-W ( \W 

) represents any character except a word character. 

     The pattern fo\Wd can be found in "fo*d", "fo@d" and "fo.d", but not in "food". Backslash-s ( \s) 

represents any whitespace character (e.g, space, tab, newline, etc.). 

     The pattern fo\sd can be found in "fo d", but not in "food". Backslash-S ( \S ) 

represents any character except a whitespace character. 

     The pattern fo\Sd can be found in "fo*d", "food" and "fo4d", but not in "fo d". 
 
 
 
Form Validation: 

 
Form validation is the process of checking that a form has been filled in correctly before it is processed. For 

example, if your form has a box for the user to type their email address, you might want your form handler to 

check that they've filled in their address before you deal with the rest of the form. 

 
There are two main methods for validating forms: server-side (using CGI scripts, ASP, etc), and client-

side (usually done using JavaScript). Server-side validation is more secure but often more tricky to code and 

it also increases load of server computer, whereas client- side (JavaScript) validation is easier to do and 

quicker too (the browser doesn't have to 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

85 | P a g e

 
 
connect to the server to validate the form, so the user finds out instantly if they've missed out that required 

field!) and it also decreases the load of server computer and hence server computer can focus on business 

logic processing. 

 
Form Validation - Checking for Non-Empty 

 
 
This has to be the most common type of form validation. You want to be sure that your visitors enter data 

into the HTML fields you have "required" for a valid submission. Below is the JavaScript code to perform 

this basic check to see if a given HTML input is empty or not. 

 
 
<script type='text/javascript'> 

 

function notEmpty() 
 

{ 
 

var v= document.getElementById('elem').value; 
 

if(v.length == 0) 
 

{ 
 

alert("Field should not be empty:"); 

document.getElementById('elem').value=” ”; 

document.getElementById('elem').focus(); 

} 
 

} 
 

</script> 
 

<form> 
 

Required Field: <input type='text' id='elem'/> 
 

<input type='button' onclick="notEmpty()" value='Check'/> 
 

</form> 
 
 
 
Form Validation - Checking for All Numbers 

 

If someone is entering a credit card, phone number, zip code, similar information you want to be able to 

ensure that the input is all numbers. The quickest way to check if an input's 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

86 | P a g e

 
 
string value is all numbers is to use a regular expression /^[0-9]+$/ that will only match if the string is all 

numbers and is at least one character long. 

<script type='text/javascript'> 
 

function validate() 
 

{ 
 

var patt=/^[0-9]+$/; 
 

var v= document.getElementById('elem').value; 
 

if(v.match(patt)) 
 

{ 
 
 
 

} 
 

else 
 

{ 
 
 
 
 
 
 
 

} 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

87 | P a g e

 

alert("valid entry"); 
 
 
 
 
 
 
 
alert("Invalid entry:"); document.getElementById('elem').value=""; 

document.getElementById('elem').focus(); 
 

</script> 
 

<form> 
 

Required Field: <input type='text' id='elem'/> 
 

<input type='button' onclick="validate()" value='Check'/> 
 

</form> 
 
 
 
Form Validation - Checking for All Letters 

 

If we wanted to see if a string contained only letters we need to specify an expression that allows for both 

lowercase and uppercase letters: /^[a-zA-Z]+$/ . 

<script type='text/javascript'> 
 

function validate() 
 

{ 
 

var patt=/^[a-zA-Z]+$/; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

88 | P a g e

 
 

var v= document.getElementById('elem').value; 
 

if(v.match(patt)) 
 

{ 
 
 
 

} 
 

else 
 

{ 
 
 
 
 
 
 
 

} 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

89 | P a g e

 

alert("valid entry"); 
 
 
 
 
 
 
 
alert("Invalid entry:"); document.getElementById('elem').value=""; 

document.getElementById('elem').focus(); 
 

</script> 
 

<form> 
 

Required Field: <input type='text' id='elem'/> 
 

<input type='button' onclick="validate()" value='Check'/> 
 

</form> 
 
 
 
 
 
 
 
Form Validation - Restricting the Length 

 

Being able to restrict the number of characters a user can enter into a field is one of the best ways to 

prevent bad data. Below we have created a function that checks for length of input. 

<script type='text/javascript'> 
 

function validate() 
 

{ 
 

var minlen=6; 
 

var v= document.getElementById('elem').value; 
 

if(v.length<6) 
 

{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

90 | P a g e

 
 
 
 
 
 
 
 

} 
 

else 
 

{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

91 | P a g e

alert("User ID must have at least 6 Characters"); 

document.getElementById('elem').value=""; 

document.getElementById('elem').focus(); 

 
 
 
 
 
 
alert("Valid entry:"); 
 

 
 

} 
 

} 
 

</script> 
 

<form> 
 

User ID: <input type='text' id='elem'/> 
 

<input type='button' onclick="validate()" value='Check'/> 
 

</form> 
 
 
 
Form Validation - Selection Made 

 

To be sure that someone has actually selected a choice from an HTML select input you can use a simple trick 

of making the first option as helpful prompt to the user and a red flag to you for your validation code. By 

making the first option of your select input something like "Please Choose" you can spur the user to 

both make a selection and allow you to check to see if the default option "Please Choose" is still selected 

when he/she submit the form. 

<script type='text/javascript'> 
 

function validate() 
 

{ 
 

var si=document.getElementById('con').selectedIndex; var v= 

document.getElementById('con').options[si].text; if(v=="Please Choose") 

{ 
 

alert("You must choose the country"); 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

92 | P a g e

 
 
 
 

} 
 

else 
 

{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

93 | P a g e

 
 
 
 
 
 
alert("Your Country is:"+v); 
 

 
 

} 
 

} 
 

</script> 
 

<form> 
 

Select Country: <select id='con'> 
 

<option>Please Choose</option> <option>Nepal</option> 
 

<option>India</option> <option>China</option> 
 

</select> 
 

<input type='button' onclick='validate()' value='Check'/> 
 

</form> 
 
 
 
Validating radio buttons 

 

Radio buttons are used if we want to choose any one out of many options such as gender. In such case any 

one of the radio button must be selected. We can validate radio button selection as below: 

<script type='text/javascript'> 
 

function validate() 
 

{ 
 

var sex=document.getElementsByName("gen"); 
 

if(sex[0].checked==false && sex[1].checked==false) 
 

{ 
 
 
 

} 
 

else 
 

{ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

94 | P a g e

 

alert("You must choose Gender"); 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

95 | P a g e

 
 

if(sex[0].checked==true) 
 

alert("Male"); else alert("Female"); 

} 
 

} 
 

</script> 
 

<form> 
 

Select Gender: 
 

<input type=radio name='gen'>Male 
 

<input type=radio name='gen'>Female 
 

<input type='button' onclick='validate()' value='Check'/> 
 

</form> 
 
 
 
 
 
 
 
Form Validation - Email Validation 

 

How to check to see if a user's email address is valid? Every email is made up for 5 parts: 
 

1.   A combination of letters, numbers, periods, hyphens, plus signs, and/or underscores 
 

2.   The at symbol @ 
 

3.   A combination of letters, numbers, hyphens, and/or periods 
 

4.   A period 
 

5.   The top level domain (com, net, org, us, gov, ...) Valid Examples: 

     jagdish@ntc.net 
 

     jagdish+bhatta@gmail.com 
 

     jagdish-bhatta@patan.edu.np 
 

Invalid Examples: 
 

     @deleted.net - no characters before the @ 
 

     free!dom@bravehe.art - invalid character ! 
 

     shoes@need_shining.com - underscores are not allowed in the domain name 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

96 | P a g e

 
 
<script type='text/javascript'> 

 

function validate() 
 

{ 
 

var patt=/^[\w\-\.\+]+\@[a-zA-Z0-9\.\-]+\.[a-zA-z0-9]{2,4}$/; var v= 

document.getElementById('elem').value; if(v.match(patt)) 

{ 
 
 
 

} 
 

else 
 

{ 
 
 
 
 
 

} 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

97 | P a g e

 

alert("valid Email"); 
 
 
 
 
 
 
 
alert("Invalid Email"); document.getElementById('elem').value=""; 
 

document.getElementById('elem').focus(); 
 

</script> 
 

<form> 
 

Email ID: <input type='text' id='elem'/> 
 

<input type='button' onclick="validate()" value='Check'/> 
 

</form> 
 
 
Handling Cookies in JavaScript: 

 
A cookie is a variable that is stored on the visitor's computer. Each time the same computer requests a page 

with a browser, it will send the cookie too. With JavaScript, you can both create and retrieve cookie values. 

A cookie is nothing but a small text file that's stored in your browser. It contains some data: 

 
1.   A name-value pair containing the actual data 

 

2.   An expiry date after which it is no longer valid 
 

3.   The domain and path of the server it should be sent to 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

98 | P a g e

 
 
As soon as you request a page from a server to which a cookie should be sent, the cookie is added to the 

HTTP header. Server side programs can then read out the information and decide that you have the right to 

view the page you requested. So every time you visit the site  the  cookie  comes  from,  information  about  

you  is  available.  This  is  very  nice sometimes, at other times it may somewhat endanger your privacy. 

Cookies can be read by JavaScript too. They're mostly used for storing user preferences. 

 
Examples of cookies: 

 
 Name cookie - The first time a visitor arrives to your web page, he or she must fill in her/his name. 

The name is then stored in a cookie. Next time the visitor arrives at your page, he or she could get a 

welcome message like "Welcome John Doe!" The name is retrieved from the stored cookie 

 Password cookie - The first time a visitor arrives to your web page, he or she must fill in a password. 

The password is then stored in a cookie. Next time the visitor arrives at your page, the password is 

retrieved from the cookie 

 Date cookie - The first time a visitor arrives to your web page, the current date is stored in a cookie. 

Next time the visitor arrives at your page, he or she could get a message  like "Your  last  visit  was 

on Tuesday  August  11, 2005!" The date is retrieved from the stored cookie 

     And so on. 
 
 
document.cookie: 

 
 

Cookies can be created, read and erased by JavaScript. They are accessible through the property 

document.cookie. Though you can treat document.cookie as if it's a string, it isn't really, and you have only 

access to the name-value pairs. If you want to set a cookie for this domain with a name-value pair 

'ppkcookie1=testcookie' that expires in seven days from the moment you should write this sentence, 

document.cookie =    “ppkcookie1=testcookie; expires=Thu, 2 Aug 2001 20:47:11 UTC; 
 

path=/” 
 

1.   First the name-value pair ('ppkcookie1=testcookie') 
 

2.   then a semicolon and a space 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

99 | P a g e

 
 

3.   then the expiry date in the correct format ('expires=Thu, 2 Aug 2001 20:47:11 
 

UTC') 
 

4.   again a semicolon and a space 
 

5.   then the path (path=/) 
 
 
Example: 

 
function createCookie(name, value, days) { 

if (days) { 
var date = new Date(); 
date.setTime(date.getTime() + (days * 24 * 60 * 60 * 1000)); 
var expires = "; expires=" + date.toGMTString(); 

} 
else var expires = ""; 
document.cookie = name + "=" + value + expires + "; path=/"; 

} 
 

 

function getCookie(c_name) { 
if (document.cookie.length > 0) { 

c_start = document.cookie.indexOf(c_name + "="); 
if (c_start != -1) { 

c_start = c_start + c_name.length + 1; 
c_end = document.cookie.indexOf(";", c_start); 
if (c_end == -1) { 

c_end = document.cookie.length; 
} 
return unescape(document.cookie.substring(c_start, c_end)); 

} 
} 
return ""; 

} 
 

 

More we can set cookie as below with the proper paths, domain and other parameters; 
 

 
function setCookie(name, value, expires, path, domain) 
{ 

 
 

/* Some characters - including spaces - are not allowed in cookies so we escape to change the value 
we have entered into a form acceptable to the cookie.*/ 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

100 | P a g e

 
 

var thisCookie = name + "=" + escape(value) + 
((expires) ? "; expires=" + expires.toGMTString() : "") + ((path) ? "; path=" 
+ path : "") + 
((domain) ? "; domain=" + domain : "") ; 

 
 

document.cookie = thisCookie; 
 

 

} 
 
 
 
Simply we can display cookie in alert box as; 

 
function showCookie() 
{ 

alert(unescape(document.cookie)); 
} 

 
 
 
 
 
 
 

More Example; 
 
<html> 

 

<head> 
 

<script type="text/javascript"> 
 

function setCookie() 
 

{ 
 

var name="Cookie1"; var 

value="Jagdish"; var ed=new Date(); 

ed.setDate(ed.getDate() +2); 
 

document.cookie = name + "=" + value+" ;expires="+ed.toGMTString()+" ;path=/"; 
 

} 
 

function getCookie() 
 

{ 
 

var l=document.cookie.length; 
 

setCookie(); 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

101 | P a g e

 
 

var ind=document.cookie.indexOf("Cookie1="); 
 

if(ind==-1) 
 

{ 
 
 
 

} 
 

else 
 

{ 
 
 
 
 
 

} 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

102 | P a g e

 

alert("Cookie not found"); 
 
 
 
 
 
 
 
var n=document.cookie.substring(ind+8,l); 
 

alert("Wel come:"+n); 
 

</script> </head> 
 

<body> 
 

<input type=button value="setcookie" onclick="setCookie()"> 
 

<input type=button value="getcookie" onclick="getCookie()"> 
 

</body> </html> 
 
 
Handling runtime errors in JavaScript: 

 

 
 

An  exception  is  an  error  that  occurs  at  runtime  due  to  an  illegal  operation  during execution. 

Examples of exceptions include trying to reference an undefined variable, or calling a non-existent method. 

Syntax errors occur when there is a problem with your JavaScript syntax. Consider the following examples of 

syntax errors versus exceptions: 

 
 

alert("I am missing a closing parenthesis //syntax error alert(x) 

//exception assuming "x" isn't defined yet undefinedfunction() 

//exception 

 
 
It is almost impossible for a programmer to write a program without errors. Programming languages include 

exceptions, or errors, that can be tracked and controlled. Exception handling is a very important concept in 

programming technology. In earlier versions of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

103 | P a g e

 
 
JavaScript, the exceptions handling was not so efficient and programmers found it difficult to use. Later 

versions of JavaScript resolved this difficulty with exceptions handling features like try..catch handlers, 

which presented a more convenient solution for programmers. Normally whenever the browser runs into an 

exception somewhere in a JavaScript code, it displays an error message to the user while aborting the 

execution of the remaining code. There are mainly two ways of trapping errors in JavaScript. 

     Using try…catch statement 
 

     Using onerror event 
 
 
 
Using try…catch statement: 

 

The try..catch statement has two blocks in it: try block and catch block. In the try block, the code contains 

a block of code that is to be tested for errors. The catch block contains the code that  is to  be executed  if 

an error occurs.    The general syntax of try..catch statement is as follows: 

try 
 

{ 
 
 
 
 
 

} 
 

catch (err) 
 

{ 
 
 
 
 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

104 | P a g e

 

………… 
 

…………//Block   of   code   which   is   to   be   tested   for   errors 
 
 
 
 
 
 
 
………… 
 

…………      //Block of code which is to be executed if an error occurs 
 

 
 

When, in the above structure, an error occurs in the try block then the control is immediately transferred to 

the catch block with the error information also passed to the catch block. Thus, the try..catch block helps to 

handle errors without aborting the program and therefore proves user-friendly. 

<html> 
 

<head> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

105 | P a g e

 
 
<script type="text/javascript"> 

 

var txt=""; 
 

function message() 
 

{ 
 

try 
 

{ 
 
 
 
 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

106 | P a g e

 
 
 
 
 
adddlert("Welcome guest!"); 
 

alert("test"); 
 

catch(err) 
 

{ 
 

txt="There was an error on this page.\n\n"; txt+="Click OK to 

continue viewing this page,\n"; txt+="or Cancel to return to the home 

page.\n\n"; if(!confirm(txt)) 

{ 
 
 
 

} 
 

} 
 

} 
 

</script> 
 

</head> 
 

<body> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

107 | P a g e

 

document.location.href="http://www.w3schools.com/"; 
 
 
 
</body> 

 

</html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

108 | P a g e

 

<input type="button" value="View message" onclick="message()" /> 
 

 
 

There is another statement called throw available in JavaScript that can be used along with. try…catch 

statements to throw exceptions and thereby helps in generating.  General syntax of this throw statement is as 

follows: 

throw(exception) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

109 | P a g e

 
 
<html> 
<body> 

<script type="text/javascript"> 
try 
{ 

var a=10; var b=0; if(b==0) 
{ 

throw "Division by zero!!!!" 
} 

} 
 

catch(err) 
{ 

alert(err); 
} 
</script> 

</body> 
</html> 

 
 
Although finally is not used as often as catch, it can often be useful. The finally clause is guaranteed to be 

executed if any portion of the try block is executed, regardless of how the code in the try block completes. It 

is generally used to clean up after the code in the try clause. If an exception occurs in the try block and there 

is an associated catch block to handle the exception, control transfers first to the catch block and then to the 

finally block. If there is no local catch block to handle the exception, control transfers first to the finally. 

 
 
<head> 

 

<script type="text/javascript"> 
 

<!-- 
 

function myFunc() 
 

{ 
 

var a = 100; 
 

try 
 

{ 
 

alert("Value of variable a is : " + a ); 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

110 | P a g e

 
 

catch ( e ) 
 

{ 
 

alert("Error: " + e.description ); 
 

} 
 

finally 
 

{ 
 

alert("Finally block will always execute!" ); 
 

} 
 

} 
 

//--> 
 

</script> 
 

</head> 
 

<body> 
 

<p>Click the following to see the result:</p> 
 

<form> 
 

<input type="button" value="Click Me" onclick="myFunc()" /> 
 

</form> 
 

</body> 
 

</html> 
 
 
 
Using onerror event 

 

The onerror event  fires when a page has a script  error. This  onerror event  occurs in JavaScript when 

an image or document causes an error during loading. This does not mean that it is a browser error. This 

event handler will only be triggered by a JavaScript error, not a browser error. The general syntax of onerror 

event is as follows: 

onerror=functionname() 
 

function functionname() 
 

{ 
 

//Error Handling Code 
 

} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

111 | P a g e

 
 
Example: 

 

<html> 
 

<head> 
 

<script type="text/javascript"> 
 

onerror=exfoerr var text1="" 

function exfoerr(msg,url,line) 
 

{ 
 

text1="Error Displayed\n\n" text1+="Error: " + msg + "\n" 

text1+="URL: " + url + "\n" text1+="Line Number: " + 

line + "\n\n" text1+="Click OK to continue.\n\n" 

alert(text1) 

return true 
 

} 
 

function display() 
 

{ 
 

addxlert("Click to Proceed!!!!") 
 

} 
 

</script> 
 

</head> 
 

<body> 
 

<input type="button" value="View message" 

onclick="display()" /> 

</body> 
 

</html> 
 
 
 
In the above example program, the function display() has an error in it (the addalert is typed wrongly as 

addxlert). When the program reads this error, the onerror event handler 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Introduction 

112 | P a g e

 
 
fires and the function exfor( ) is called with the three parameters passed to it (the error message, the url 

of the page and the line number of error 18) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Unit 2: Issues of Web Technology] 
Web Technology (CSC-353) 

 

 

Jagdish Bhatta 
 

Central Department of Computer Science & Information Technology 
Tribhuvan University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
2

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Architectural Issues of Web Layer: 
 
The web layer is also referred to as the UI layer. The web layer is primarily concerned with presenting  
the  user  interface  and  the  behavior  of the  application (handling  user interactions/events). While the web 
layer can also contain logic, core application logic is usually located in the services layer. The three Layers 
within the Web Layer are: 

 
 HTML-The Content Layer: The content layer is where you store all the content that your 

customers want to read or look at. This includes text and images as well as multimedia. It's also 
important to make sure that every aspect of your site is represented in the content layer. That way, 
your customers who have JavaScript turned off or can't view CSS will still have access to the entire 
site, if not all the functionality. 

 
 CSS - the Styles Layer: Store all your styles for your Web site in an external style sheet. This defines 

the way the pages should look, and you can have separate style sheets for various media types. Store 
your CSS in an external style sheet so that you can get the benefits of the style layer across the site. 

 
 JavaScript - the Behavior Layer: JavaScript is the most commonly used language for writing the 

behavior layer; ASP, CGI and PHP can also generate Web page behaviors. However, when most 
developers refer to the behavior layer, they mean that layer that is activated directly in the Web 
browser - so JavaScript is nearly always the language of choice. You use this layer to interact directly 
with the DOM or Document Object Model. 

 
When  you're creating a Web page,  it  is  important  to  keep the layers separate.  Using external style 
sheets is the best way to separate your content from your design. And the same is true for using external 
JavaScript files.   Some of the benefits of separating the layers are: 

 
 Shared resources: When you write an external CSS file or JavaScript file, you can use that file by 

any page on your Web site. There is no duplication of effort, and whenever the file changes,  it  
changes for every page that  uses it  without  you making more than one change. 

 
 Faster downloads: Once the script or stylesheet has been downloaded by your customer the first 

time, it is cached. Then every other page that is downloaded loads more quickly in the browser 
window. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
3

 

 

 
 

 
 Multi-person teams: If you have more than one person working on a Web site at once,  you  can  

divide  up  the workload  without  worrying  about  permissions  or content management. You can 
also hire people who are style/design experts to work on the CSS while your scripters work on 
the JavaScript, and your writers work in the content files. 

 Accessibility: External style sheets and script files are more accessible to more browsers, because 
they can be ignored more easily, and because they provide more options. For example, you can set up 
a style sheet that is displayed only for screen readers or a script library that's only used by people on 
cell phones. 

 
 Backwards  compatibility:  When  you  have  a  site  that  is  designed  with  the development 

layers, it will be more backwards compatible because browsers that can't use technology like CSS and 
JavaScript can still view the HTML. 

 
 
HTTP (Hypertext Transfer Protocol): 

 
HTTP stands for  Hypertext Transfer Protocol. It  is a TCP/IP based communication protocol which is 
used to  deliver virtually all files and other data, collectively  called resources, on the World Wide Web. 
These resources could be HTML files, image files, query results, or anything else. A browser is works as an 
HTTP client because it sends requests to  an HTTP server which is called  Web server. The Web Server 
then sends responses back to the client. The standard and default port for HTTP servers to listen on is 
80 but it can be changed to any other port like 8080 etc. There are three important things about HTTP of 
which you should be aware: 

 
 HTTP is connectionless: After a request is made, the client disconnects from the server and waits 

for a response. The server must re-establish the connection after it processes the request. 
 

 HTTP is media independent: Any type of data can be sent by HTTP as long as both the client 
and server know how to handle the data content. How content is handled is determined by the MIME 
specification. 

 
 HTTP is stateless: This is a direct result of HTTP's being connectionless. The server and client 

are aware of each other only during a request. Afterwards, each forgets the other. For this reason 
neither the client  nor the browser can retain information between different requests across the web 
pages. 

 
Following diagram shows where HTTP Protocol fits in communication; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
4

 

 

 
 

 
 
Like most network protocols, HTTP uses the client-server model: An HTTP client opens a connection and 
sends a request message to an HTTP server; the server then returns a response message, usually containing 
the resource that was requested. After delivering the response,  the  server  closes  the  connection.  The  
format  of  the  request  and  response messages is similar and will have following structure: 

 

 

    An initial line CRLF 

    Zero or more header lines CRLF 
    A blank line i.e. a CRLF 

    An optional message body like file, query data or query output. 
 
 
CR and LF here mean ASCII values 13 and 10. The initial line is different for the request than for the 
response.  A request  line has three parts, separated by spaces:  An HTTP Method Name, the local path of 
the requested resource, the version of HTTP being used. Example of initial line for Request Message is: 
“GET /path/to/file/index.html HTTP/1.0”. The initial response line, called the status line, also has three 
parts separated by spaces: The version of HTTP being used, a response status code that gives the result of the 
request, an English reason phrase describing the status code.   Example, HTTP/1.0 200 OK or “HTTP/1.0 
404 Not Found” 

 
Header lines provide information about the request or response, or about the object sent in the message body. 
The header lines are in the usual text header format, which is: one line per header, of the form "Header-
Name: value", ending with CRLF. Example of Header Line  is  “User-agent:  Mozilla/3.0Gold” or  “Last-
Modified:  Fri,  31  Dec 1999  23:59:59 
GMT”. 

 
An HTTP message may have a body of data sent after the header lines. In a response, this is where the 

requested resource is returned to the client (the most common use of the message body), or perhaps 
explanatory text if there's an error. In a request, this is where user-entered data or uploaded files are sent to 
the server. 

 
HTTP: header fields 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
5

 

 

 
 
HTTP header fields are components of the message header of requests and responses in the Hypertext 
Transfer Protocol (HTTP). They define the operating parameters of an HTTP transaction. 

 
The header fields are transmitted after the request or response line, the first line of a message. Header fields 
are colon-separated name-value pairs in clear-text string format, terminated by a carriage return (CR) and line 
feed (LF) character sequence. The end of the header  fields  is  indicated  by  an  empty  field,  resulting  in  
the  transmission  of  two consecutive CR-LF pairs. Long lines can be folded into multiple lines; 
continuation lines are indicated by presence of space (SP) or horizontal tab (HT) as first character on next 
line. Few fields can also contain comments (i.e. in. User-Agent, Server, Via fields), which can be ignored by 
software. 

 
There are no limits to size of each header field name or value, or number of headers in standard itself. 
However most servers, clients and proxy software, impose some limits for practical and security reasons. 
For example; Apache 2.3 server by default  limits each header size to 8190 bytes, and there can be at most 
100 headers in single request. 

 
HTTP Session: 

 
An HTTP session is a sequence of network request-response transactions. An HTTP client initiates a request 
by establishing a Transmission Control Protocol (TCP) connection to a particular port on a server (typically 
port 80). An HTTP server listening on that port waits for a client's request message. Upon receiving the 
request, the server sends back a status line, such as "HTTP/1.1 200 OK", and a message of its own, the body 
of which is perhaps the requested resource, an error message, or some other information 

 
File Transfer Protocol: 

 
File Transfer Protocol (FTP) lives up to its name and provides a method for transferring files over a 
network from one computer to another. More generally, it provides for some simple file management on the 
contents of a remote computer. It is an old protocol and is used less than it was before the World Wide Web 
came along. Today, its primary use is uploading files to a Web site. It can also be used for downloading from 
the Web but, more often than not, downloading  is done via  HTTP. Sites that  have a lot of 
downloading (software sites, for example) will often have an FTP server to handle the traffic. If FTP is 
involved, the URL will have ftp: at the front. 

 
The File Transfer Protocol is used to send files from one system to another under user commands.  Both  text  
and  binary  files  are  accommodated  and  the  protocol  provides features for controlling user access. 
When a user wishes to engage in File transfer, FTP sets up a TCP connection to the target system for the 
exchange of control messages. These allow used ID and password to be transmitted and allow the user to 
specify the file and file action desired. Once file transfer is approved, a second TCP connection is set up for 
data transfer. The file is transferred over the data connection, without the overhead of headers, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
6

 

 

 
 
or control information at the application level. When the transfer is complete, the control connection is used 
to signal the completion and to accept new file transfer commands. 

 
FTP can be run in active or passive mode, which determines how the data connection is established. In active 
mode, the client sends the server the IP address and port number on which the client will listen, and the server 
initiates the TCP connection. at the condition when the client  is behind a firewall and unable to accept 
incoming TCP connections, passive mode may be used. In this mode the client sends a PASV command to 
the server and receives an IP address and port number in return. The client uses these to open the data 
connection to the server. Data transfer can be done in any of three modes: 

 
 Stream mode: Data is sent as a continuous stream, relieving FTP from doing any  processing.  

Rather,  all  processing  is  left  up  to  TCP.  No  End-of-file indicator is needed, unless the data is 
divided into records. 

 

 
 Block mode: FTP breaks the data into several blocks (block header, byte count, and data field) and 

then passes it on to TCP. 
 

 Compressed mode: Data is compressed using a single algorithm (usually run- length encoding). 
 
Client/Server Model: 

 
The client–server model is a computing model that acts as distributed application which partitions tasks or 
workloads between the providers of a resource or service, called servers, and  service  requesters,  called  
clients. Often  clients  and  servers  communicate  over  a computer network on separate hardware, but both 
client and server may reside in the same system. A server machine is a host that is running one or more 
server programs which share their resources with clients. A client does not share any of its resources, but 
requests a server's content or service function. Clients therefore initiate communication sessions with 
servers which await incoming requests. 

 
Client/Server Architecture: 

 
Client server network architecture consists of two kinds of computers: clients and servers. Clients are the 
computers that that do not share any of its resources but requests data and other services from the server 
computers and server computers provide services to the client  computers  by  responding  to  client  
computers  requests.  Normally  servers  are powerful computers and clients are less powerful personal 
computers. Web servers are included as part of a larger package of internet and intranet related programs for 
serving e- mail, downloading requests for FTP files and building and publishing web pages. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
7

 

 

 

 
 
 

 
 
 
 
 

Advantages 
 The  client/  server  architecture  reduces  network  traffic  by  providing  a  query response to the 

user rather than transferring total files. 
 The client/ server model improves multi-user updating through a graphical user interface (GUI) 

front end to the shared database. 
     Easy to implement security policies, since the data are stored in central location 
     Simplified network administration 

 
Disadvantages 

     Failure of the server causes whole network to be collapsed 
     Expensive than P2P, Dedicated powerful servers are needed 
     Extra effort are needed for administering and managing the server. 

 
 
 
Client/Sever architecture can be of different model based on the number of layers it holds. Some of 
them are; 

 
     2-Tier Architecture 

 
2-tier architecture is used to describe client/server systems where the client requests resources and the 
server responds directly to the request, using its own resources. This means that the server does not 
call on another application in order to provide part of the service. It runs the client processes 
separately from the server processes, usually on a different computer: 

 
– The client processes provide an interface for the customer, and gather and present  data  

usually  on  the  customer’s  computer.  This  part  of  the application is the presentation layer 
 

– The  server  processes  provide  an  interface  with  the  data  store  of  the business. This part 
of the application is the data layer 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
8

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
ere is an intermediary level, meaning the architec

 

 
 
 

– The business logic that validates data, monitors security and permissions, and performs 
other business rules can be housed on either the client or the server, or split between the two. 

•    Fundamental  units  of  work  required  to  complete  the  business 
process 

•    Business rules can be automated by an application program. 

     3-Tier Architecture      

In 3-tier architecture, th                                                                              ture is 
generally split up between: 

 
– A client, i.e. the computer, which requests the resources, equipped with a user interface 

(usually a web browser) for presentation purposes 
 

– The application server (also called middleware), whose task it is to provide the requested 
resources, but by calling on another server 

 
– The data server,  which provides the application  server  with the data  it requires 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     N-Tier Architecture (multi-tier) 
 

N-tier architecture (with N more than 3) is really 3 tier architectures in which the middle tier is split 
up into new tiers. The application tier is broken down into separate parts. What these parts are differs 
from system to system. The following picture shows it: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
9

 

 

 
 

The primary advantage of N-tier architectures is that they make load balancing possible. Since the 
application logic is distributed between several servers, processing  can then  be  more evenly 
distributed  among  those servers.  N-tiered architectures are also more easily scalable, since only 
servers experiencing high demand,   such  as   the   application   server,   need   be   upgraded.   The   
primary disadvantage of N-tier architectures is that it is also more difficult to program and test an N-
tier architecture due to its increased complexity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Advantages of Multi-Tier Client/Server architectures include: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- Issues of Web Technology

Jagdish Bhatta 
10

 

 

 
 

 Changes to the user interface or to the application logic are largely independent from one another, 
allowing the application to evolve easily to meet new requirements. 

 
 Network bottlenecks are minimized because the application layer does not transmit extra data to the 

client, only what is needed to handle a task. 
 

 The client is insulated from database and network operations. The client can access data easily and 
quickly without having to know where data is or how many servers are on the system. 

 
 Database connections can  be  'pooled' and  thus shared  by several users,  which greatly reduces 

the cost associated with per-user licensing. 
 

 The organization has database independence because the data layer is written using standard SQL 
which is platform independent. The enterprise is not tied to vendor- specific stored procedures. 

 
 The  application  layer  can  be  written  in  standard  third  or  fourth  generation languages, such 

as ASP, PHP with which the organization's in-house programmers are experienced. 
 
 
 
What kind of systems can benefit? 

 
Generally, any Client/Server system can be implemented in an 'N-Tier' architecture, where application logic 
is partitioned among various servers. This application partitioning creates an integrated information 
infrastructure which enables consistent, secure, and global access to critical data. A significant reduction in 
network traffic, which leads to faster netwo rk communications, greater reliability, and greater overall 
performance is also made possible in a 'N-Tier' Client/Server architecture. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Unit 3: XML] 
Web Technology (CSC-353) 

 

 

Jagdish Bhatta 
 

Central Department of Computer Science & Information Technology 
Tribhuvan University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
2

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Introduction:: 
 
As we have studied in unit one that HTML is designed to display data. In contrast, XML is designed to 
transport and store data. XML stands for EXtensible Markup Language and is much like HTML. XML was 
designed to carry data, not to display data. XML tags are not predefined.  You  must  define  your  own tags.  
XML  is designed  to  be self-descriptive. Extensible Markup Language (XML) is a markup language that 
defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. 

 
XML is not a replacement for HTML. XML and HTML were designed with different goals: 

 
     XML was designed to transport and store data, with focus on what data is 
     HTML was designed to display data, with focus on how data looks 

 
HTML is about displaying information, while XML is about carrying information. 

 
Maybe it is a little hard to understand, but XML does not DO anything. XML was created to structure, 
store, and transport information. The following example is a note to Tulsi, from Giri, stored as XML: 

 
<note> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk web tech class at Patan!</body> 
</note> 

 
The note above is quite self descriptive. It has sender and receiver information, it also has a heading and a 
message body. But still, this XML document does not DO anything. It is just information wrapped in tags. 
Someone must write a piece of software to send, receive or display it. 

 
The tags in the example above (like <to> and <from>) are not defined  in any XML standard. These 
tags are "invented" by the author of the XML document. That is because the  XML  language  has  no  
predefined  tags.  However,  the  tags  used  in  HTML  are predefined. HTML documents can only use tags 
defined in the HTML standard (like <p>, 
<h1>, etc.). In contrast, XML allows the author to define his/her own tags and his/her own 
document structure. The XML processor can not tell us which elements and attributes are 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
3

 

 

 
 
valid. As a result we need to define the XML markup we are using.  To do this, we need to define the markup 
language’s grammar. There are numerous “tools” that can be used to build an XML language – some 
relatively simple, some much more complex. They include DTD (Document Type Definition), RELAX, 
TREX, RELAX NG, XML Schema, Schmatron, etc. 

 
The design goals for XML are: 

 
1.   XML shall be straightforwardly usable over the Internet. 
2.   XML shall support a wide variety of applications. 
3.   XML shall be compatible with SGML. 
4.   It shall be easy to write programs which process XML documents. 
5.   The number of optional features in XML is to be kept to the absolute minimum, ideally zero. 
6.   XML documents should be human-legible and reasonably clear. 
7.   The XML design should be prepared quickly. 
8.   The design of XML shall be formal and concise. 
9.   XML documents shall be easy to create. 

 
XML Usages 

 
XML is used in many aspects of web development, often to simplify data storage and sharing. 

 
XML Separates Data from HTML: If you need to display dynamic data in your HTML document, it will 
take a lot of work to edit the HTML each time the data changes. With XML, data can be stored in separate 
XML files. This way you can concentrate on using HTML for layout and display, and be sure that changes in 
the underlying data will not require any changes to the HTML. With a few lines of JavaScript code, you can 
read an external XML file and update the data content of your web page. 

 
XML  Simplifies  Data  Sharing:  In  the  real  world,  computer  systems  and  databases contain  data  in  
incompatible  formats.  XML  data  is  stored  in  plain  text  format.  This provides a software- and hardware-
independent way of storing data. This makes it much easier to create data that can be shared by different 
applications. 

 
XML Simplifies Data Transport: One of the most time-consuming challenges for developers   is  to  
exchange  data  between  incompatible  systems  over  the  Internet. Exchanging data as XML greatly 
reduces this complexity, since the data can be read by different incompatible applications. 

 
XML Simplifies Platform Changes: Upgrading to new systems (hardware or software platforms),  is always 
time consuming.  Large amounts of data must  be converted and incompatible data is often lost. XML 
data is stored in text format. This makes it easier to expand or upgrade to new operating systems, new 
applications, or new browsers, without losing data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
4

 

 

 
 
XML Makes Your Data More Available: Different applications can access your data, not only in 
HTML pages, but also from XML data sources. With XML, your data can be available to all kinds of 
"reading machines" (Handheld computers, voice machines, news feeds, etc), and make it more available for 
blind people, or people with other disabilities. 

 
XML Used to Create New Internet Languages:  A lot of new Internet languages are created with 
XML.  Here are some examples: 

 
     XHTML 
     WSDL (Web Services Description Language) for describing available web services 
 WAP and WML (Wireless Markup Language) as markup languages for handheld devices 
     RSS (Really Simple Syndication / Rich Site Summary) languages for news feeds 
     RDF (Resource Description Framework), a family of w3c spec,  and OWL (Web 

Ontology Language)  for describing resources and ontology 
     SMIL (Synchronized Multimedia Integration Language) for describing multimedia 

for the web 
 
XML Tree 

 
XML documents form a tree structure that starts at "the root" and branches to "the leaves". XML documents 
use a self-describing and simple syntax: 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<note> 

<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 

<body>Don't forget to bunk the web tech class at Patan!</body> 
</note> 

 
The first line is the XML declaration. It defines the XML version (1.0) and the encoding used (ISO-8859-1 = 
Latin-1/West European character set). The next line describes the root element of the document (like saying: 
"this document is a note"): 

 
<note> 

 
The next 4 lines describe 4 child elements of the root (to, from, heading, and body): 

 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk the web tech class at Patan!</body> 

 
And finally the last line defines the end of the root element: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
5

 

 

 
 
</note> 

 
You can assume, from this example, that the XML document contains a note to Tulsi from 
Giri. 

 
Thus, XML documents must contain a root element. This element is "the parent" of all other elements. The 
elements in an XML document form a document tree. The tree starts at the root and branches to the lowest 
level of the tree. All elements can have sub elements (child elements): 

 
<root> 

<child> 
<subchild>.....</subchild> 

</child> 
</root> 

 
The  terms  parent,  child,  and  sibling  are  used  to  describe  the  relationships  between elements. Parent 
elements have children. Children on the same level are called siblings (brothers or sisters). All elements can 
have text content and attributes (just like in HTML). 

 
XML Syntax Rules 

 
The syntax rules of XML are very simple and logical. The rules are easy to learn, and easy to use. 

 
1.   All XML Elements Must Have a Closing Tag. In HTML, some elements may not have to have a 

closing tag, like; 
 

<p>This is a paragraph. 
<br> 

 
In XML, it is illegal to omit the closing tag. All elements must have a closing tag: 

 
<p>This is a paragraph.</p> 
<br /> 
<hello> This is hello </hello> 

 
2.   XML tags are case sensitive. The tag <Letter> is different from the tag <letter>. 

Opening and closing tags must be written with the same case: 
 

<Message>This is incorrect</message> 
<message>This is correct</message> 

 
3.   XML Elements Must be Properly Nested. In HTML, you might see improperly nested elements: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
6

 

 

 
 

<b><i>This text is bold and italic</b></i> 
 

In XML, all elements must be properly nested within each other: 
 

<b><i>This text is bold and italic</i></b> 
 

4.   XML Documents Must Have a Root Element. XML documents must contain one element that is the 
parent of all other elements. This element is called the root element. 

 
<root> 

<child> 
<subchild>.....</subchild> 

</child> 
</root> 

 
5.   XML Attribute Values Must be Quoted. XML elements can have attributes in name/value pairs 

just like in HTML. In XML, the attribute values must always be quoted. Study the  two  XML 
documents  below.  The  first  one  is  incorrect, the second is correct: 

 
<note date=06/01/2012> 

<to>Tulsi</to> 
<from>Giri</from> 

</note> 
 

<note date="06/01/2012"> 
<to>Tulsi</to> 
<from>Giri</from> 

</note> 
 

The error in the first document is that the date attribute in the note element is not quoted. 
 

6.   Entity Reference. Some characters have a special meaning in XML. If you place a character like "<" 
inside an XML element, it will generate an error because the parser interprets it as the start of a new 
element. This will generate an XML error: 

 
<message>if salary < 1000 then</message> 

 
To avoid this error, replace the "<" character with an entity reference: 

 
<message>if salary &lt; 1000 then</message> There are 5 

predefined entity references in XML: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
7

 

 

 
 

&lt; < less than 

&gt; > greater than 

&amp; & ampersand 

&apos; ' apostrophe 

&quot; " quotation mark
 

7.   Comments in XML. The syntax for writing comments in XML is similar to that of 
HTML. 

 
<!-- This is a comment --> 

 
8.   White-space  is  preserved  in  XML.  HTML  truncates  multiple  white-space characters to one 

single white-space: 
 

 
HTML: Hello           Tulsi 

Output: Hello Tulsi 
 

 
With XML, the white-space in a document is not truncated. 

 
XML Elements 

 
An XML  document  contains  XML  Elements.    An XML  element  is  everything  from 
(including) the element's start tag to (including) the element's end tag. An element can 

contain: 

     other elements 
     text 
     attributes 
     or a mix of all of the above... Consider an 

example; 

<bookstore> 
 

<book category="CHILDREN"> 
<title>Harry Potter</title> 
<author>J K. Rowling</author> 
<year>2005</year> 
<price>29.99</price> 

</book> 
 

<book category="WEB"> 
<title>Learning XML</title> 
<author>Erik T. Ray</author> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
8

 

 

 
 

<year>2003</year> 
<price>39.95</price> 

</book> 
 

</bookstore> 
 
In the example above, <bookstore> and <book> have element contents, because they contain other 
elements. <book> also has an attribute (category="CHILDREN"). <title>, 
<author>, <year>, and <price> have text content because they contain text. 

 
XML Naming Rules 

 
XML elements must follow these naming rules: 

 
     Names can contain letters, numbers, and other characters 
     Names cannot start with a number or punctuation character 
     Names cannot start with the letters xml (or XML, or Xml, etc) 
     Names cannot contain spaces 
     Any name can be used, no words are reserved. 

 
Best Naming Practices 

 
     Make   names   descriptive.   Names   with   an   underscore   separator   are   nice: 

<first_name>, <last_name>. 
 

     Names  should  be  short  and  simple,   like  this:  <book_title>  not  like  this: 
<the_title_of_the_book>. 

 
 Avoid "-" characters. If you name something "first-name," some software may think you want to 

subtract name from first. 
 

 Avoid "." characters. If you name something "first.name," some software may think that "name" is a 
property of the object "first." 

 
 Avoid  ":"  characters.  Colons  are  reserved  to  be  used  for  something  called namespaces (more 

later). 
 

 XML documents often have a corresponding database. A good practice is to use the naming rules of 
your database for the elements in the XML documents. 

 
 Non-English letters like éòá are perfectly legal in XML, but watch out for problems if your software 

vendor doesn't support them. 
 
XML Elements are Extensible 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
9

 

 

 
 
XML elements can be extended to carry more information. Look at the following XML 
example: 

 
<note> 
<to>Tulsi</to> 
<from>Giri</from> 
<body>Don't forget to bunk the web tech class at Patan!</body> 
</note> 

 
Let's imagine that we created an application that extracted the <to>, <from>, and <body> 
elements from the XML document to produce this output: 

MESSAGE To: Tulsi 
From: Giri 

 
Don't forget to bunk the web tech class at Patan! 

 
Suppose the XML document has been modified by adding some extra information to it like: 

 
<note> 
<date>2012-01-06</date> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk thee web tech class at Patan!</body> 
</note> 

 
Should the application break or crash? 

 
No. The application should still be able to find the <to>, <from>, and <body> elements in the XML 
document and produce the same output. Thus, one of the beauties of XML, is that it can be extended 
without breaking applications. 

 
XML Attributes 

 
XML elements can have attributes, just like HTML. Attributes provide additional information about an 
element. In HTML, attributes provide additional information about elements: 

 
<img src="computer.gif"> 
<a href="demo.asp"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
10

 

 

 
 
Attributes often provide information that is not a part of the data. In the example below, the file type is 
irrelevant to the data, but can be important to the software that wants to manipulate the element: 

 
<file type="gif">computer.gif</file> 

 
Attribute values must always be quoted. Either single or double quotes can be used. For a person's sex, the 
person element can be written like this: 

<person sex="male"> 
 
or like this: 

<person sex='male'> 
 
If the attribute value itself contains double quotes you can use single quotes, like in this example: 

<gangster name='Chota "Shotgun" Chetan'> 
 
or you can use character entities: 

<gangster name="Chota &quot;Shotgun&quot; Chetan"> 
 
 
 
XML Elements vs. Attributes 

 
Take a look at these examples: 

 
<person sex="male"> 

<firstname>Jagdish</firstname> 
<lastname>Bhatta</lastname> 

</person> 
 

<person> 
<sex>male</sex> 
<firstname>Jagdish</firstname> 
<lastname>Bhatta</lastname> 

</person> 
 
In the first example sex is an attribute. In the last, sex is an element. Both examples provide the same 
information. There are no rules about when to use attributes or when to use elements. Attributes are handy in 
HTML. In XML my advice is to avoid them. Use elements instead. 

 
Writing in different ways 

 
The following three XML documents contain exactly the same information: A date attribute is 

used in the first example: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
11

 

 

 
 

<note date="10/01/2008"> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk the web tech class at Patan!</body> 

</note> 
 
A date element is used in the second example: 

 
<note> 

<date>10/01/2008</date> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk the web tech class at Patan!</body> 

</note> 
 
An expanded date element is used in the third: 

 
<note> 

<date> 
<day>10</day> 
<month>01</month> 

<year>2008</year> 
</date> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk the web tech class at Patan!</body> 

</note> 
 
 
 

Restrictions with XML Attributes 
 
Some of the problems with using attributes are: 

 
     attributes cannot contain multiple values (elements can) 
     attributes cannot contain tree structures (elements can) 
     attributes are not easily expandable (for future changes) 

 
Attributes are difficult to read and maintain. Use elements for data. Use at tributes for information that is 
not relevant to the data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
12

 

 

 

 
 
 
 
 
 
 

XML Attributes for Metadata 
 
Sometimes ID references are assigned to elements. These IDs can be used to identify XML elements in much 
the same way as the id attribute in HTML. This example demonstrates this: 

 
<messages> 

<note id="501"> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget to bunk the web tech class at Patan!</body> 

</note> 
 

<note id="502"> 
<to>Giri</to> 
<from>Tulsi</from> 
<heading>Re: Reminder</heading> 
<body>Ok Giri dai !!</body> 

</note> 
</messages> 

 
The id attributes above are for identifying the different notes. It is not a part of the note itself. In other words, 
metadata (data about data) should be stored as attributes, and the data itself should be stored as elements. 

 
XML Validation 

 
XML with correct  syntax is "Well Formed" XML. XML validated against  a DTD is 
"Valid" XML. 

 
Well Formed XML Documents 

 
A "Well Formed" XML document has correct XML syntax. The syntax ru les as described in previous 
sections are: 

 
     XML documents must have a root element 
     XML elements must have a closing tag 
     XML tags are case sensitive 
     XML elements must be properly nested 
     XML attribute values must be quoted 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
13

 

 

 
 

Consider the earlier example; 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<note> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don’t forget to bunk the web tech class at Patan!</body> 
</note> 

 
Now, a "Valid" XML document is a "Well Formed" XML document, which also conforms to the rules of a 
Document Type Definition (DTD): 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE note SYSTEM "Note.dtd"> 
<note> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don’t forget to bunk the web tech class at Patan!</body> 
</note> 

 
The DOCTYPE declaration in the example above, is a reference to an external DTD file. The purpose of a 
DTD is to define the structure of an XML document. It defines the structure with a list of legal elements. For 
above example the DTD seems like; 

 
<!DOCTYPE note 
[ 
<!ELEMENT note (to,from,heading,body)> 
<!ELEMENT to (#PCDATA)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT heading (#PCDATA)> 
<!ELEMENT body (#PCDATA)> 
]> 

 
W3C supports an XML-based alternative to DTD, called XML Schema: 

 
<xs:element name="note"> 

 
<xs:complexType> 

<xs:sequence> 
<xs:element name="to" type="xs:string"/> 
<xs:element name="from" type="xs:string"/> 

<xs:element name="heading" type="xs:string"/> 
<xs:element name="body" type="xs:string"/> 

</xs:sequence> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
14

 

 

 
 
</xs:complexType> 

 
</xs:element> 

 
XML schema: 

 
An XML schema is a description of a type of XML document, typically expressed in terms of 
constraints on the structure and content of documents of that type, above and beyond the basic syntactical 
constraints imposed by XML  itself. These constraints are generally expressed using some combination of 
grammatical rules governing the order of elements,  Boolean  predicates  that  the  content  must  satisfy,  data  
types  governing  the content of elements and attributes, and more specialized rules such as uniqueness and 
referential integrity constraints. 

 
Technically, a schema is an abstract collection of metadata, consisting of a set of schema components:  
chiefly element  and  attribute declarations and  complex and  simple type definitions. These components 
are usually created by processing a collection of schema documents, which contain the source language 
definitions of these components. In popular usage, however, a schema document is often referred to as a 
schema. 

 
Schema documents are organized by namespace: all the named schema components belong to a target 
namespace, and the target namespace is a property of the schema document as a whole. A schema document 
may include other schema documents for the same namespace, and may import schema documents for a 
different namespace. 

 
There are languages developed specifically to  express XML schemas. The  Document Type Definition 
(DTD) language, which is native to the XML specification, is a schema language that is of relatively limited 
capability, but that also has other uses in XML aside from the expression of schemas. Two more expressive 
XML schema languages in widespread use are XML Schema (with a capital S) and RELAX NG (REgular 
LAnguage for XML Next Generation). 

 
There is some confusion as to when to use the capitalized spelling "Schema" and when to use the lowercase 
spelling. The lowercase form is a generic term and may refer to any type of schema, including DTD, XML 
Schema (aka XSD), RELAX NG, or others, and should always be written using lowercase except when 
appearing at the start of a sentence. The form "Schema" (capitalized) in common use in the XML community 
always refers to W3C XML Schema. 

 
XML Namespace: 

 
XML Namespaces provide a method to avoid element name conflicts. In XML, element names are defined 
by the developer. This often results in a conflict when trying to mix XML documents from different XML 
applications. Consider following examples; 

 
This XML carries HTML table information: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
15

 

 

 
 
<table> 

<tr> 
<td>Apples</td> 
<td>Bananas</td> 

</tr> 
</table> 

 
This XML carries information about a table (a piece of furniture): 

 
<table> 

<name>African Coffee Table</name> 
<width>80</width> 
<length>120</length> 

</table> 
 
If these XML fragments were added together, there would be a name conflict. Both contain a <table> element, 
but the elements have different content and meaning. 

 
An XML parser will not know how to handle these differences. 

 
Thus, xmlns tagged XML namespaces are used for providing uniquely named elements and attributes in 
an XML document. They are defined in a W3C recommendation. An XML instance may contain element 
or attribute names from more than one XML vocabulary. If each vocabulary is given a namespace, the 
ambiguity between identically named elements or attributes can be resolved. The XML namespace is a 
special type of reserved XML attribute that you place in an XML tag. The reserved attribute is actually more 
like a prefix that you attach to any namespace you create. This attribute prefix is "xmlns:", which stands for 
XML NameSpace. The colon is used to separate the prefix from your namespace that you are creating. 

 
A namespace name is a uniform resource identifier (URI). Typically, the URI chosen for the namespace of 
a given XML vocabulary describes a resource under the control of the author or organisation defining the 
vocabulary, such as a URL for the author's Web server. However, the namespace specification does not 
require nor suggest that the namespace URI be used to retrieve information; it is simply treated by an XML 
parser as a string. For example, the document at http://www.w3.org/1999/xhtml itself does not contain any 
code 

 
The name conflicts in above mentioned example can be handled by using the concept of namespace as a 
name prefix, as below ; 

 
This XML carries information about an HTML table, and a piece of furniture: 

 
<h:table> 

<h:tr> 
<h:td>Apples</h:td> 
<h:td>Bananas</h:td> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
16

 

 

 
 

</h:tr> 
</h:table> 

 
<f:table> 

<f:name>African Coffee Table</f:name> 
<f:width>80</f:width> 
<f:length>120</f:length> 

</f:table> 
 
When using prefixes in XML, a so-called namespace for the prefix must be defined. The namespace is 
defined by the xmlns attribute in the start tag of an element. The namespace declaration has the following 
syntax. xmlns:prefix="URI". 

 
<root> 

 
<h:table xmlns:h="http://www.w3.org/TR/html4/"> 

<h:tr> 
<h:td>Apples</h:td> 
<h:td>Bananas</h:td> 

</h:tr> 
</h:table> 

 
<f:table xmlns:f="http://www.w3schools.com/furniture"> 

<f:name>African Coffee Table</f:name> 
<f:width>80</f:width> 
<f:length>120</f:length> 

</f:table> 
 
</root> 

 
In the example above, the xmlns attribute in the <table> tag give the h: and f: prefixes a qualified namespace. 
When a namespace is defined for an element, all child elements with the same prefix are associated with the 
same namespace. 

 
Namespaces can be declared in the elements where they are used or in the XML root element: 

 
<root xmlns:h="http://www.w3.org/TR/html4/" 
xmlns:f="http://www.w3schools.com/furniture"> 

 
<h:table> 

<h:tr> 
<h:td>Apples</h:td> 
<h:td>Bananas</h:td> 

</h:tr> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
17

 

 

 
 
</h:table> 

 
<f:table> 

<f:name>African Coffee Table</f:name> 
<f:width>80</f:width> 
<f:length>120</f:length> 

</f:table> 
 
</root> 

 
The namespace URI is not used by the parser to look up information. The purpose is to give the 
namespace a unique name. However, often companies use the namespace as a pointer to a web page 
containing namespace information. 

 
XML schema languages 

 
-    DTD 
-    XML Schema 

 
 
 
 
Document Type Definition (DTD) 

 
DTD is an approach for defining the structure of XML Document. It is an XML schema language whose 
purpose is to define legal building blocks of an XML document. A DTD defines the document structure with 
a list of legal elements and attributes. 

 
Document Type Definition (DTD) is a set of markup declarations that define a document type for SGML-
family markup languages (SGML, XML, HTML). DTDs were a precursor to XML schema and have a 
similar function, although different capabilities. 

 
DTDs use a terse formal syntax that declares precisely which elements and references may appear where in 
the document of the particular type, and what the elements’ contents and attributes are. DTDs also declare 
entities which may be used in the instance document. XML uses a subset of SGML DTD. 

 
We use DTD because with a DTD, each of your XML files can carry a description of its own format. With 

a DTD, independent groups of people can agree to use a standard DTD for interchanging data. Your 

application can use a standard DTD to verify that the data you receive from the outside world is valid. You 

can also use a DTD to verify your own data. 

 
A Document Type Declaration associates a DTD with an XML document. Document Type 
Declarations  appear  in  the  syntactic  fragment  doctypedecl  near  the  start  of an  XML 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
18

 

 

 
 
document. The declaration establishes that the document is an instance of the type defined by the referenced 
DTD. 

 
DTDs make two sorts of declaration: 

 
     an optional external subset 
     an optional internal subset 

 
The declarations in the internal subset form part of the Document Type Declaration in the document itself. 
The declarations in the external subset are located in a separate text file. 

 
If the DTD is declared inside the XML file, it should be wrapped in a DOCTYPE 
definition with the following syntax: 

 
<!DOCTYPE root-element [element-declarations]> 

 
Example XML document with an internal DTD: 

 
<?xml version="1.0"?> 
<!DOCTYPE note [ 
<!ELEMENT note (to,from,heading,body)> 
<!ELEMENT to (#PCDATA)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT heading (#PCDATA)> 
<!ELEMENT body (#PCDATA)> 
]> 
<note> 
<to>Tulsi</to> 
<from>Giri</from> 
<heading>Reminder</heading> 
<body>Don't forget me this weekend</body> 
</note> 

 
The DTD above is interpreted like this: 

 
     !DOCTYPE note defines that the root element of this document is note 
 !ELEMENT note defines that the note element contains four elements: 

"to,from,heading,body" 
     !ELEMENT to defines the to element  to be of type "#PCDATA" 
     !ELEMENT from defines the from element to be of type "#PCDATA" 
     !ELEMENT heading defines the heading element to be of type "#PCDATA" 
     !ELEMENT body defines the body element to be of type "#PCDATA" 

 
If the DTD is declared in an external file, it should be wrapped in a DOCTYPE 

 

definition. Here, DTD is present in separate file and a reference is placed to its location in 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
19

 

 

 
 
the document. External DTD’s are easy to apply to multiple documents. In case, a modification is to be made 

in future, it could be done in just one file and the onerous task of doing it for all the documents is omitted. 

External DTDs are of two types: private and public. 

 
 
Private external DTDs are identified by the keyword SYSTEM, and are intended for use by a single author 

or group of authors. Its syntax is: 

 
<!DOCTYPE root-element SYSTEM "DTD location">. 

 
 
For Example, the listed below is the same XML document as above, but with an external 
DTD. 

 
<?xml version="1.0"?> 
<!DOCTYPE note SYSTEM "note.dtd"> 
<note> 

<to>Tulsi</to> 
<from>Girii</from> 
<heading>Reminder</heading> 
<body>Don't forget me this weekend!</body> 

</note> 
 
And this is the file "note.dtd" which contains the DTD: 

 
<!ELEMENT note (to,from,heading,body)> 
<!ELEMENT to (#PCDATA)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT heading (#PCDATA)> 
<!ELEMENT body (#PCDATA)> 

 
 
Public external DTDs are identified by the keyword PUBLIC and are intended for broad use. Its syntax is: 

<!DOCTYPE root_element PUBLIC "DTD_name" "DTD_location">. 
 

The DTD_name follows the syntax: "prefix//owner_of_the_DTD//description_of_the_DTD//ISO 

639_language_identifier". 
 

For example, 
 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" 

"http://www.w3.org/TR/REC-html40/loose.dtd"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
20

 

 

 
 

The following prefixes are allowed in the DTD name: 
 

Prefix: Definition: 

ISO 
 

The DTD is an ISO standard. All ISO standards are approved. 

+ 
 

The DTD is an approved non-ISO standard. 

- 
 

The DTD is an unapproved non-ISO standard. 

 
 
 

Defining Elements: 
 
 

Elements are the  main  building  blocks of XML documents.  In a DTD,  elements are declared with an 

ELEMENT declaration with the following syntax. 

<!ELEMENT element-name category> Or 

<!ELEMENT element-name (element-content)> 
 

Empty  elements  are  declared  with  the  category  keyword  EMPTY.  Its  syntax  is: 
 

<!ELEMENT element-name EMPTY>. For example, <!ELEMENT br EMPTY>. 
 

Elements with only parsed character data are declared with #PCDATA inside parentheses.  Its  syntax  

is:  <!ELEMENT  element-name  (#PCDATA)>.  For  example, 

<!ELEMENT from (#PCDATA)>. 
 

Elements with any content are declared with the category keyword ANY, can contain any combination of 

parsable data. Its syntax is: <!ELEMENT element-name ANY>. For example, <!ELEMENT note ANY>. 
 

Elements with one or more children are declared with the name of the children elements inside 

parentheses.  Its syntax  is <!ELEMENT  element-name (child1,  child2,…)>.  For example, <!ELEMENT 

note (to,from,body)>. 

When children are declared in a sequence separated by commas, the children must appear in the same 

sequence in the document. In a full declaration, the children must also be declared, and the children can 

also have children. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
21

 

 

 
 
We can declare only one occurrence of an element. Its syntax is: <!ELEMENT element- name (child-

name)>. For example, <!ELEMENT note (message)>. This example declares that the child element 

"message" must occur once, and only once inside the "note" element. 
 

We can also declare minimum one occurrence of an element.  Its syntax is <!ELEMENT element-name 

(child-name+)>. For example, <!ELEMENT note (message+)>. The + sign in the example above declares 

that the child element "message" must occur one or more times inside the "note" element. 
 

Note: We can use * in place of + to declare zero or more occurrence of an element. We can use ? in place of + 

to declare zero or one occurrence of an element 
 

We can also declare either/or content. For example, <!ELEMENT note (to,from,header,(message|body))>. 

This example declares that  the "note" element  must contain a "to" element, a "from" element, a "header" 

element, and either a "message" or a "body" element. 
 

We can declare mixed content. For example, <!ELEMENT note (#PCDATA|to|from|header|message)*>. 

This example declares that the "note" element can contain zero  or  more occurrences of parsed  character 

data, "to", "from", "header", or "message" elements. 
 

Defining Attributes 
 

In a DTD, attributes are declared with an ATTLIST declaration. An attribute declaration has the following 

syntax: 

<!ATTLIST element-name attribute-name attribute-type default-value> For example, 

<!ATTLIST payment type CDATA "check"> And its XML 

example is 

<payment type="check" /> 
 
 
 
The attribute-type can be one of the following: 

 

Type Description 

CDATA The value is character data (text that doesn’t contain 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
22

 

 

 
 
 markup) 

(en1|en2|..) The value must be one from an enumerated list 

ID The value is a unique id 

IDREF The value is the id of another element 

IDREFS The value is a list of other ids 

NMTOKEN The value is a valid XML name 

NMTOKENS The value is a list of valid XML names separated by 

whitespace 

ENTITY The name of an entity (which must be declared in the 
 

DTD) 

ENTITIES The value is a list of entities, separated by whitespace

NOTATION The value is a name of a notation (which must be 

declared in the DTD) 

xml: The value is a predefined xml value 

 

The default-value can be one of the following: 
 

Value Explanation 

Value The default value of the attribute. For example, 
 

<!ATTLIST square width CDATA "0"> 

#REQUIRED The attribute is required. For example, 
 

<!ATTLIST person number CDATA #REQUIRED> 

#IMPLIED The attribute is not required (optional). For example, 
 

<!ATTLIST contact fax CDATA #IMPLIED> 

 
 
#FIXED value 

 
 
The attribute value is fixed. For example, 

 

<!ATTLIST sender company CDATA #FIXED 

"Microsoft"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
23

 

 

 
 
 A Default attribute value: 

 
 

Example: 
DTD 
<!ELEMENT square EMPTY> 
<!ATTLIST square width CDATA "0"> 

 
Valid XML: 
<square width="100" /> 

 
In the example above, the "square" element is defined to be an empty element with a 
"width" attribute of  type CDATA. If no width is specified, it has a default value of 0. 

 
#REQUIRED: 

 
Syntax:	
<!ATTLIST element-name attribute-name attribute-type #REQUIRED> 

 
Example:	
DTD: 
<!ATTLIST person number CDATA #REQUIRED> 

 
Valid XML: 
<person number="5677" /> 

 
Invalid XML: 
<person /> 

 
Use the #REQUIRED keyword if you don't have an option for a default value, but still want to force the 
attribute to be present. 

 
#IMPLIED: 

 
Syntax:	
<!ATTLIST element-name attribute-name attribute-type #IMPLIED> 

 
Example:	
DTD: 
<!ATTLIST contact fax CDATA #IMPLIED> 

 
Valid XML: 
<contact fax="555-667788" /> 

 
Valid XML: 
<contact /> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
24

 

 

 
 
Use the #IMPLIED keyword if you don't want to force the author to include an attribute, and you don't 
have an option for a default value. 

 
#FIXED: 

 
Syntax:	
<!ATTLIST element-name attribute-name attribute-type #FIXED "value"> 

 
Example:	
DTD: 
<!ATTLIST sender company CDATA #FIXED "Microsoft"> 

 
Valid XML: 
<sender company="Microsoft" /> 

 
Invalid XML: 
<sender company="W3Schools" /> 

 
Use the #FIXED keyword when you want  an attribute to  have a fixed  value without allowing the 
author to change it. If an author includes another value, the XML parser will return an error. 

 
Enumerated Attribute Values: 

 
Syntax:	
<!ATTLIST element-name attribute-name (en1|en2|..) default-value> 

 
Example:	
DTD: 
<!ATTLIST payment type (check|cash) "cash"> 

 
XML example: 
<payment type="check" /> 
or 
<payment type="cash" /> 

 
Use enumerated attribute values when you want the attribute value to be one of a fixed set of legal values. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
25

 

 

 
 
DTD Examples: 

 
<!DOCTYPE NEWSPAPER [ 

 
<!ELEMENT NEWSPAPER (ARTICLE+)> 
<!ELEMENT ARTICLE (HEADLINE,BYLINE,LEAD,BODY,NOTES)> 
<!ELEMENT HEADLINE (#PCDATA)> 
<!ELEMENT BYLINE (#PCDATA)> 
<!ELEMENT LEAD (#PCDATA)> 
<!ELEMENT BODY (#PCDATA)> 
<!ELEMENT NOTES (#PCDATA)> 

 
<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED> 
<!ATTLIST ARTICLE EDITOR CDATA #IMPLIED> 
<!ATTLIST ARTICLE DATE CDATA #IMPLIED> 
<!ATTLIST ARTICLE EDITION CDATA #IMPLIED> 

 
]> 

 
XML Schema 

 
XML Schema is a XML schema language which is an alternative to DTD. XML Schema is an XML-based 
alternative to DTD. Unlike DTD, XML Schemas has support for data types and namespaces. The XML 
Schema language, also referred to as XML Schema Definition (XSD), is used to define XML schema. 

 
An XML Schema: 

    defines elements that can appear in a document 
 

    defines attributes that can appear in a document 
 

    defines which elements are child elements 
 

    defines the order of child elements 
 

    defines the number of child elements 
 

    defines whether an element is empty or can include text 
 

    defines data types for elements and attributes 
 

    defines default and fixed values for elements and attributes 
 
 
XML Schemas are the successors of DTDs. In near future, XML Schemas will be used in most 

Web applications as a replacement for DTDs because of the following reasons; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
26

 

 

 
 

    XML Schemas are extensible to future additions 
 

    XML Schemas are richer and more powerful than DTDs 
 

    XML Schemas are written in XML 
 

    XML Schemas support data types 
 

    XML Schemas support namespaces 
 
 
 
DTDs are better for text-intensive applications, while schemas have several advantages for data-intensive 

workflows. Schemas are written in XML and thusly follow the same rules, while DTDs are written in a 

completely different language. 

 
The <schema> Element: 

 

The <schema> element is the root element of every XML Schema. 
 
<?xml version="1.0"?> 

 
<xs:schema> 
... 
... 
</xs:schema> 

 
The <schema> element may contain some attributes. A schema declaration often looks something like 
this: 

 
<?xml version="1.0"?> 

 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

targetNamespace="http://www.w3schools.com" 

xmlns="http://www.w3schools.com" elementFormDefault="qualified"> 

... 
 

... 
 
 
</xs:schema> 

 
The code fragment xmlns:xs="http://www.w3.org/2001/XMLSchema" indicates that the elements and data 
types used in the schema come from the "http://www.w3.org/2001/XMLSchema" namespace. It also 
specifies that the elements and data types that come from the "http://www.w3.org/2001/XMLSchema" 
namespace should be prefixed with xs: . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
27

 

 

 
 

 
The code fragment targetNamespace="http://www.w3schools.com"  indicates that the elements  defined  
by  this  schema  (note,  to,  from,  heading,  bod y.)  come  from  the "http://www.w3schools.com" 
namespace. 

 
The code fragment xmlns="http://www.w3schools.com" indicates that the default namespace is 
"http://www.w3schools.com". 

 
The code fragment elementFormDefault="qualified" indicates that any elements used by the XML 
instance document  which were declared  in this schema must  be namespace qualified. 

 
Referencing a Schema in an XML Document: 

 
XML documents can have a reference to an XML Schema. For example consider the 

 

following “note.xml” file. This file has a reference the “note.xsd” schema. 
 
 

<?xml version="1.0"?> 
 

<note xmlns="http://www.w3schools.com" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.w3schools.com note.xsd"> 

<to>Tulsi</to> 
 

<from>Giri</from> 
 

<heading>Reminder</heading> 
 

<body>Don't forget me this weekend!</body> 
 

</note> 
 

The code fragment xmlns="http://www.w3schools.com" specifies the default namespace declaration. This 
declaration tells the schema-validator that all the elements used in this XML document are declared in the 
"http://www.w3schools.com" namespace. 

 
The code fragment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" is the namespace. 

 
In the code fragment xsi:schemaLocation="http://www.w3schools.com note.xsd", there are two attribute 
values. The first value is the namespace to use. The second value is the location of the XML schema to use for 
that namespace. 

 
The following example is an XML Schema file called "note.xsd" that defines the elements of the XML 
document above ("note.xml"): 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
28

 

 

 
 

<?xml version="1.0"?> 
 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

targetNamespace="http://www.w3schools.com" 

xmlns="http://www.w3schools.com" elementFormDefault="qualified"> 

<xs:element name="note"> 
 

<xs:complexType> 
 

<xs:sequence> 
 

<xs:element name="to" type="xs:string"/> 
 

<xs:element name="from" type="xs:string"/> 
 

<xs:element name="heading" type="xs:string"/> 
 

<xs:element name="body" type="xs:string"/> 
 

</xs:sequence> 
 

</xs:complexType> 
 

</xs:element> 
 

</xs:schema> 
 

Here, the note element is a complex type because it contains other elements. The other elements (to, from, 
heading, body) are simple types because they do not contain other elements. 

 
XSD Simple Type:  Consists of simple elements and attributes. 

 
XSD Simple Elements: 

 

 
 

A simple element is an XML element that can contain only text. It cannot contain any other elements or 
attributes. The text can be of many different types. It can be one of the types included in the XML Schema 
definition (Boolean, string, date, etc.), or it can be a custom type that you can define yourself. You can also 
add restrictions (facets) to a data type in order to limit its content, or you can require the data to match a 
specific pattern. 

 
The syntax for defining a simple element is: 

 
<xs:element name="xxx" type="yyy"/>  , where xxx is the name of the element and yyy is the data type of 
the element. XML Schema has a lot of built-in data types. The most common types are: 

 
     xs:string 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
29

 

 

 
 

     xs:decimal 
     xs:integer 
     xs:boolean 
     xs:date 
     xs:time 

 
For Example; 

 
Consider the XML elements; 

 
<lastname>Bhatta</lastname> 
<age>42</age> 
<dateborn>1970-03-27</dateborn> 

 
And here are the corresponding simple element definitions: 

 
<xs:element name="lastname" type="xs:string"/> 
<xs:element name="age" type="xs:integer"/> 
<xs:element name="dateborn" type="xs:date"/> 

 
 
 
Default and Fixed Values for Simple Elements: 

 
Simple elements may have a default value OR a fixed value specified. A default value is automatically 
assigned to the element when no other value is specified In the following example the default value is "red": 

 
<xs:element name="color" type="xs:string" default="red"/> 

 
A fixed value is also automatically assigned to the element, and you cannot specify another value. In the 
following example the fixed value is "red": 

 
<xs:element name="color" type="xs:string" fixed="red"/> 

 
 
 
XSD Attributes: 

 
Simply attributes are associated with the complex elements. If an element has attributes, it is considered to 
be of a complex type. Simple elements cannot have attributes. But the attribute itself is always declared as a 
simple type. All attributes are declared as simple types. 

 
The syntax for defining an attribute is: 

 
<xs:attribute name="xxx" type="yyy"/> , where xxx is the name of the attribute and yyy specifies the data 
type of the attribute. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
30

 

 

 
 

 
XML Schema has a lot of built-in data types. The most common types are: 

 
     xs:string 
     xs:decimal 
     xs:integer 
     xs:boolean 
     xs:date 
     xs:time 

 
Example	
	
Here is an XML element with an attribute: 

 
<lastname lang="EN">Smith</lastname> And here is the 

corresponding attribute definition: 

<xs:attribute name="lang" type="xs:string"/> 
 
 
 
Default and Fixed Values for Attributes: 

 
Attributes may have a default value OR a fixed value specified. A default value is automatically assigned to 
the attribute when no other value is specified. In t he following example the default value is "EN": 

 
<xs:attribute name="lang" type="xs:string" default="EN"/> 

 
A fixed value is also automatically assigned to the attribute, and you cannot specify another value. 

 
In the following example the fixed value is "EN": 

 
<xs:attribute name="lang" type="xs:string" fixed="EN"/> 

 
 
 
Optional and Required Attributes: 

 
Attributes are optional by default. To specify that the attribute is required, use the "use" attribute: 

 
<xs:attribute name="lang" type="xs:string" use="required"/> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
31

 

 

 
 
Restrictions on Content: 

 
When an XML element or attribute has a data type defined, it puts restrictions on the element's or 
attribute's content. 

 
If an XML element is of type "xs:date" and contains a string like "Hello World", the element will not 
validate. 

 
With XML Schemas, you can also add your own restrictions to your XML elements and attributes. These 
restrictions are called facets. 

 
 
 
XSD Restrictions/ Facets: 

 
1.   Restrictions on Values 

 
The following example defines an element called "age" with a restriction. The value of age cannot be 
lower than 0 or greater than 120: 

 
<xs:element name="age"> 

<xs:simpleType> 
<xs:restriction base="xs:integer"> 

<xs:minInclusive value="0"/> 
<xs:maxInclusive value="120"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

2.   Restrictions on a Set of Values 
 

To limit the content of an XML element to a set of acceptable values, we would use the enumeration 
constraint. The example below defines an element called "car" with a restriction. The only acceptable 
values are: Audi, Golf, BMW: 

 
<xs:element name="car"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 
<xs:enumeration value="Audi"/> 
<xs:enumeration value="Golf"/> 
<xs:enumeration value="BMW"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

The example above could also have been written like this: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
32

 

 

 
 

<xs:element name="car" type="carType"/> 
<xs:simpleType name="carType"> 

<xs:restriction base="xs:string"> 
<xs:enumeration value="Audi"/> 
<xs:enumeration value="Golf"/> 
<xs:enumeration value="BMW"/> 

</xs:restriction> 
</xs:simpleType> 

 
Note: In this case the type "carType" can be used by other elements because it is not a part of the "car" 
element. 

 
3.   Restrictions on a Series of Values 

 
To limit the content of an XML element to define a series of numbers or letters that can be used, we would 
use the pattern constraint. 

 
The example below defines an element called "letter" with a restriction. The only acceptable value 
is ONE of the LOWERCASE letters from a to z: 

 
<xs:element name="letter"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 
<xs:pattern value="[a-z]"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

The next  example defines an element  called "initials" with a restriction. The only acceptable value 
is THREE of the UPPERCASE letters from a to z: 

 
<xs:element name="initials"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 
<xs:pattern value="[A-Z][A-Z][A-Z]"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

The next example also defines an element called "initials" with a restriction. The only acceptable value 
is THREE of the LOWERCASE OR UPPERCASE letters from a to z: 

 
<xs:element name="initials"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 
<xs:pattern value="[a-zA-Z][a-zA-Z][a-zA-Z]"/> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
33

 

 

 
 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

The next  example defines an element  called  "choice" with a restriction. The only acceptable value 
is ONE of the following letters: x, y, OR z: 

 
<xs:element name="choice"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 
<xs:pattern value="[xyz]"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

The next example defines an element called "zipcode" with a restriction. The only acceptable value is 
FIVE digits in a sequence, and each digit must be in a range from 0 to 9: 

 
<xs:element name="zipcode"> 

<xs:simpleType> 
<xs:restriction base="xs:integer"> 
<xs:pattern value="[0-9][0-9][0-9][0-9][0-9]"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:element> 
 

4.      Restrictions on Whitespace Characters 
 

To specify how whitespace characters should be handled, we would use the whiteSpace constraint. This 
example defines an element called "address" with a restriction. The whiteSpace constraint is set to 
"preserve", which means that the XML processor WILL NOT remove any white space characters: 

 
 

<xs:element name="address"> 
<xs:simpleType> 

<xs:restriction base="xs:string"> 
<xs:whiteSpace value="preserve"/> 

</xs:restriction> 
</xs:simpleType> 
</xs:element> 

 
This example also defines an element called "address" with a restriction. The whiteSpace constraint is set 
to "replace", which means that the XML processor WILL REPLACE all white space characters (line 
feeds, tabs, spaces, and carriage returns) with spaces: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
34

 

 

 
 

 
<xs:element name="address"> 
<xs:simpleType> 

<xs:restriction base="xs:string"> 
<xs:whiteSpace value="replace"/> 

</xs:restriction> 
</xs:simpleType> 
</xs:element> 

 
This example also defines an element called "address" with a restriction. The whiteSpace constraint is set 
to "collapse", which means that the XML processor WILL REMOVE all white space characters (line 
feeds, tabs, spaces, carriage returns are replaced with spaces, leading and trailing spaces are removed, and 
multiple spaces are reduced to a single space): 

 
<xs:element name="address"> 
<xs:simpleType> 

<xs:restriction base="xs:string"> 
<xs:whiteSpace value="collapse"/> 

</xs:restriction> 
</xs:simpleType> 
</xs:element> 

 
5.   Restrictions on Length: 

 
To limit the length of a value in an element, we would use the length, maxLength, and minLength 
constraints. This example defines an element called "password" with a restriction. The value must be 
exactly eight characters: 

 
<xs:element name="password"> 
<xs:simpleType> 

<xs:restriction base="xs:string"> 
<xs:length value="8"/> 

</xs:restriction> 
</xs:simpleType> 
</xs:element> 

 
This example defines another element called "password" with a restriction. The value must be minimum 
five characters and maximum eight characters: 

 
<xs:element name="password"> 
<xs:simpleType> 

<xs:restriction base="xs:string"> 
<xs:minLength value="5"/> 

<xs:maxLength value="8"/> 
</xs:restriction> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
35

 

 

 
 

</xs:simpleType> 
</xs:element> 

 
 
 
 

Restrictions for Data types 
 

Constraint Description 
Enumeration Defines a list of acceptable values 

fractionDigits Specifies the maximum number of decimal places allowed. Must be equal to 
or greater than zero 

Length Specifies the exact number of characters or list items allowed. Must be 
equal to or greater than zero 

maxExclusive Specifies the upper bounds for numeric values (the value must be less than 
this value) 

maxInclusive Specifies the upper bounds for numeric values (the value must be less than 
or equal to this value) 

maxLength Specifies the maximum number of characters or list items allowed. Must be 
equal to or greater than zero 

minExclusive Specifies the lower bounds for numeric values (the value must be greater 
than this value) 

minInclusive Specifies the lower bounds for numeric values (the value must be greater 
than or equal to this value) 

minLength Specifies the minimum number of characters or list items allowed. Must be 
equal to or greater than zero 

Pattern Defines the exact sequence of characters that are acceptable 

totalDigits Specifies the exact number of digits allowed. Must be greater than zero 

whiteSpace Specifies how white space (line feeds, tabs, spaces, and carriage returns) is 
handled 

 
XSD Complex Types: 

 

 
 

A complex element is an XML element that contains other elements and/or attributes. There are four 

kinds of complex elements: 

     empty elements 
     elements that contain only other elements 
     elements that contain only text 
     elements that contain both other elements and text 

 
Note: Each of these elements may contain attributes as well! 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
36

 

 

 
 
Examples of Complex Elements 

 
A complex XML element, "product", which is empty: 

 
<product pid="1345"/> 

 
A complex XML element, "employee", which contains only other elements: 

 
<employee> 

<firstname>Jagdish</firstname> 
<lastname>Bhatta</lastname> 

</employee> 
 
A complex XML element, "food", which contains only text: 

 
<food type="dessert">Ice cream</food> 

 
A complex XML element, "description", which contains both elements and text: 

 
<description> 
It happened on <date lang="Nepali">03/09/2099</date> .... 
</description> 

 
 
 
How to Define a Complex Element 

 
Look at this complex XML element, "employee", which contains only other elements: 

 
<employee> 

<firstname>Jagdishfirstname> 
<lastname>Smith</lastname> 

</employee> 
 
We can define a complex element in an XML Schema two different ways: 

 
1.   The "employee" element can be declared directly by naming the element, like this: 

 
<xs:element name="employee"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
37

 

 

 
 

If you use the method described above, only the "employee" element can use the specified complex type. 
Note that the child elements, "firstname" and "lastname", are surrounded by the <sequence> indicator. 
This means that the child elements must appear in the same order as they are declared. 

 
2.   The "employee" element can have a type attribute that refers to the name of the complex type to 

use: 
 

<xs:element name="employee" type="personinfo"/> 
 

<xs:complexType name="personinfo"> 
<xs:sequence> 

<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 
</xs:complexType> 

 
If you use the method described above, several elements can refer to the same complex type, like this: 

 
<xs:element name="employee" type="personinfo"/> 
<xs:element name="student" type="personinfo"/> 
<xs:element name="member" type="personinfo"/> 

 
<xs:complexType name="personinfo"> 

<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 
</xs:complexType> 

 
You can also base a complex element on an existing complex element and add some elements, like 
this: 

 
<xs:element name="employee" type="fullpersoninfo"/> 

 
<xs:complexType name="personinfo"> 

<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 
</xs:complexType> 

 
<xs:complexType name="fullpersoninfo"> 

<xs:complexContent> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
38

 

 

 
 

<xs:extension base="personinfo"> 
<xs:sequence> 

<xs:element name="address" type="xs:string"/> 
<xs:element name="city" type="xs:string"/> 
<xs:element name="country" type="xs:string"/> 

</xs:sequence> 
</xs:extension> 

</xs:complexContent> 
</xs:complexType> 

 
Types of XSD Complex Elements 

 
1.   XSD Empty Element 

An empty complex element  cannot  have contents, only attributes. Consider an 
empty XML element: 

<product prodid="1345" /> 
 

The "product" element  above has no  content  at all. To  define a type with  no content, we must 
define a type that allows elements in its content, but we do not actually declare any elements, like this: 

 
<xs:element name="product"> 

<xs:complexType> 
<xs:complexContent> 
<xs:restriction base="xs:integer"> 

<xs:attribute name="prodid" type="xs:positiveInteger"/> 
</xs:restriction> 

</xs:complexContent> 
</xs:complexType> 

</xs:element> 
 

In the example above, we define a complex type with a complex content. The complexContent 
element signals that we intend to restrict or extend the content model of a complex type, and the 
restriction of integer declares one attribute but does not introduce any element content. 

 
However, it is possible to declare the "product" element more compactly, like this: 

 
<xs:element name="product"> 

<xs:complexType> 
<xs:attribute name="prodid" type="xs:positiveInteger"/> 

</xs:complexType> 
</xs:element> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
39

 

 

 
 

Or you can give the complexType element a name, and let the "product" element have a type 
attribute that refers to the name of the complexType (if you use this method, several elements can 
refer to the same complex type): 

 
<xs:element name="product" type="prodtype"/> 

 
<xs:complexType name="prodtype"> 

<xs:attribute name="prodid" type="xs:positiveInteger"/> 
</xs:complexType> 

 
 
 
 

2.   XSD Elements only 
An "elements-only" complex type contains an element that contains only other 
elements. Consider an XML element "person", that contains only other elements: 

 
<person> 

<firstname>Jagdish</firstname> 
<lastname>Bhatta</lastname> 

</person> 
 

You can define the "person" element in a schema, like this: 
 

<xs:element name="person"> 
<xs:complexType> 
<xs:sequence> 

<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 

Notice the <xs:sequence> tag. It means that the elements defined ("firstname" and 
"lastname") must appear in that order inside a "person" element. 

 
Or you can give the complexType element a name, and let the "person" element have a type 
attribute that refers to the name of the complexType (if you use this method, several elements can 
refer to the same complex type): 

 
<xs:element name="person" type="persontype"/> 

 
<xs:complexType name="persontype"> 

<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
40

 

 

 
 

</xs:sequence> 
</xs:complexType> 

 
 
 

3.   XSD Text only Elements 
 

A complex text-only element can contain text and attributes. This type contains only simple content (text 
and attributes), therefore we add a simpleContent element around the content. When using simple content, 
you must define an extension OR a restriction within the simpleContent element, like this: 

 
<xs:element name="somename"> 

<xs:complexType> 
<xs:simpleContent> 

<xs:extension base="basetype"> 
.... 
.... 

</xs:extension> 
</xs:simpleContent> 

</xs:complexType> 
</xs:element> OR 

<xs:element name="somename"> 
<xs:complexType> 

<xs:simpleContent> 
<xs:restriction base="basetype"> 

.... 

.... 
</xs:restriction> 

</xs:simpleContent> 
</xs:complexType> 

</xs:element> 
 

Note: You can use the extension/restriction element to expand or to limit the base simple type for 
the element. 

 
Here is an example of an XML element, "shoesize", that contains text-only: 

 
<shoesize country="france">35</shoesize> 

 
The following example declares a complexType, "shoesize". The content is defined as an integer value, 
and the "shoesize" element also contains an attribute named "country": 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
41

 

 

 
 

<xs:element name="shoesize"> 
<xs:complexType> 
<xs:simpleContent> 
<xs:extension base="xs:integer"> 
<xs:attribute name="country" type="xs:string" /> 

</xs:extension> 
</xs:simpleContent> 

</xs:complexType> 
</xs:element> 

 
We could also give the complexType element a name, and let the "shoesize" element have a type 
attribute that refers to the name of the complexType (if you use this method, several elements can 
refer to the same complex type): 

 
<xs:element name="shoesize" type="shoetype"/> 

 
<xs:complexType name="shoetype"> 

<xs:simpleContent> 
<xs:extension base="xs:integer"> 
<xs:attribute name="country" type="xs:string" /> 

</xs:extension> 
</xs:simpleContent> 

</xs:complexType> 
 

4.   XSD Mixed Content (that contain other element and text) 
 

A mixed complex type element can contain attributes, elements, and text. Consider an 
XML element, "ordernote", that contains both text and other elements: 

 
<ordernnote> 

Dear Mr.<name>Jagdish Bhatta</name>. 
Your gift order for the valentine day with order id 

<orderid>9999</orderid> 
will be shipped on <shipdate>2012-02-13</shipdate>. 

</ordernnote> 
 

The following schema declares the "ordernote" element: 
 

<xs:element name="ordernote"> 
<xs:complexType mixed="true"> 
<xs:sequence> 
<xs:element name="name" type="xs:string"/> 
<xs:element name="orderid" type="xs:positiveInteger"/> 
<xs:element name="shipdate" type="xs:date"/> 

</xs:sequence> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
42

 

 

 
 

</xs:complexType> 
</xs:element> 

 
Note: To enable character data to appear between the child-elements of "ordernote", the  mixed  
attribute  must  be  set  to  "true".  The  <xs:sequence>  tag  means  that  the elements defined  (name,  
orderid  and  shipdate)  must  appear  in that  order  inside a "ordernote" element. 

 
We could also give the complexType element a name, and let the "ordernote" element have a type 
attribute that refers to the name of the complexType (if you use this method, several elements can 
refer to the same complex type): 

 
<xs:element name="ordernote" type="ordertype"/> 

 
<xs:complexType name="ordertype" mixed="true"> 

<xs:sequence> 
<xs:element name="name" type="xs:string"/> 

<xs:element name="orderid" type="xs:positiveInteger"/> 
<xs:element name="shipdate" type="xs:date"/> 

</xs:sequence> 
</xs:complexType> 

 
XSD Indicators: 

 
XSD  indicators are used  to  control how elements are to  be used  in  documents with indicators. There 
are seven indicators: 

 
1.   Order indicators:  They contain; 

 
     All 
     Choice 
     Sequence 

 
2.   Occurrence indicators: They include; 

 
     maxOccurs 
     minOccurs 

 
3.   Group indicators: They contain; 

 
     Group name 
     attributeGroup name 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
43

 

 

 
 

1.    Order Indicators: Order indicators are used to define the order of the elements. 
 

All Indicator 
 

The <all> indicator specifies that the child elements can appear in any order, and that each child 
element must occur only once: 

 
<xs:element name="person"> 

<xs:complexType> 
<xs:all> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:all> 
</xs:complexType> 

</xs:element> 
 

Note: When using the <all> indicator you can set the <minOccurs> indicator to 0 or 1 and  the  
<maxOccurs>  indicator  can  only  be  set  to  1  (the  <minOccurs>  and 
<maxOccurs> are described later). 

 
Choice Indicator 

 
The <choice> indicator specifies that either one child element or another can occur: 

 
<xs:element name="person"> 

<xs:complexType> 
<xs:choice> 
<xs:element name="employee" type="employee"/> 
<xs:element name="member" type="member"/> 

</xs:choice> 
</xs:complexType> 

</xs:element> 
 

 
 

Sequence	Indicator	
	

The <sequence> indicator specifies that the child elements must appear in a specific order: 
 

<xs:element name="person"> 
<xs:complexType> 
<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
44

 

 

 
 

</xs:complexType> 
</xs:element> 

 
2.   Occurrence Indicators 

 
Occurrence indicators are used to define how often an element can occur. 

 
Note: For all "Order" and "Group" indicators (any, all, choice, sequence, group name, and group 
reference) the default value for maxOccurs and minOccurs is 1. 

 
maxOccurs Indicator 

 
The <maxOccurs> indicator specifies the maximum number of times an element can occur: 

 
<xs:element name="person"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="full_name" type="xs:string"/> 
<xs:element name="child_name" type="xs:string" maxOccurs="10"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 

The example above indicates that the "child_name" element can occur a minimum of one time (the 
default value for minOccurs is 1) and a maximum of ten times in the "person" element. 

 
minOccurs Indicator 

 
The <minOccurs> indicator specifies the minimum number of times an element can occur: 

 
<xs:element name="person"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="full_name" type="xs:string"/> 
<xs:element name="child_name" type="xs:string" maxOccurs="10" 
minOccurs="0"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 

The example above indicates that the "child_name" element can occur a minimum of zero times and a 
maximum of ten times in the "person" element. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
45

 

 

 
 

To allow an element to appear an unlimited number of times, use the maxOccurs="unbounded" 
statement: 

 
Consider an example; 

 
An XML file called "Myfamily.xml": 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 

 
<persons xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="family.xsd"> 

 
<person> 

<full_name>Anjolina</full_name> 
<child_name>Janet</child_name> 

</person> 
 

<person> 
<full_name>Dhritrasta</full_name> 
<child_name>Duryodhan</child_name> 
<child_name>Dushasan</child_name> 
<child_name>Kushashan</child_name> 
<child_name>Sushasan</child_name> 

</person> 
 

<person> 
<full_name>Bhismapitamaha</full_name> 

</person> 
 

</persons> 
 

The XML file above contains a root element named "persons". Inside this root element we have defined 
three "person" elements. Each "person" element must contain a "full_name" element and it can contain up 
to five "child_name" elements. 

 
Here is the schema file "family.xsd": 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified"> 

 
<xs:element name="persons"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="person" maxOccurs="unbounded"> 

<xs:complexType> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
46

 

 

 
 

<xs:sequence> 
<xs:element name="full_name" type="xs:string"/> 
<xs:element name="child_name" type="xs:string" minOccurs="0" 
maxOccurs="5"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
</xs:sequence> 

</xs:complexType> 
</xs:element> 

 
</xs:schema> 

 
3.   Group Indicators 

 
Group indicators are used to define related sets of elements. 

 
Element Groups:   Element groups are defined with the group declaration, like this: 

<xs:group name="groupname"> 
... 
</xs:group> 

 
You must define an all, choice, or sequence element inside the group declaration. The following 
example defines a group named "persongroup", that defines a group of elements that must occur in an 
exact sequence: 

 
<xs:group name="persongroup"> 

<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 
<xs:element name="birthday" type="xs:date"/> 

</xs:sequence> 
</xs:group> 

 
After you have defined a group, you can reference it in another definition, like this: 

 
<xs:group name="persongroup"> 

<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 
<xs:element name="birthday" type="xs:date"/> 

</xs:sequence> 
</xs:group> 

 
<xs:element name="person" type="personinfo"/> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
47

 

 

 
 

 
<xs:complexType name="personinfo"> 

<xs:sequence> 
<xs:group ref="persongroup"/> 

<xs:element name="country" type="xs:string"/> 
</xs:sequence> 

</xs:complexType> 
 

Attribute   Groups:   Attribute   groups   are   defined   with   the   attributeGroup declaration, like 
this: 

<xs:attributeGroup name="groupname"> 
... 
</xs:attributeGroup> 

 
The following example defines an attribute group named "personattrgroup": 

 
<xs:attributeGroup name="personattrgroup"> 

<xs:attribute name="firstname" type="xs:string"/> 
<xs:attribute name="lastname" type="xs:string"/> 
<xs:attribute name="birthday" type="xs:date"/> 

</xs:attributeGroup> 
 

After  you  have  defined  an  attribute  group,  you  can  reference  it  in  another definition, like 
this: 

 
<xs:attributeGroup name="personattrgroup"> 

<xs:attribute name="firstname" type="xs:string"/> 
<xs:attribute name="lastname" type="xs:string"/> 
<xs:attribute name="birthday" type="xs:date"/> 

</xs:attributeGroup> 
 

<xs:element name="person"> 
<xs:complexType> 
<xs:attributeGroup ref="personattrgroup"/> 

</xs:complexType> 
</xs:element> 

 
XSD The <any> Element : 

 
The <any> element enables us to extend the XML document with elements not specified by the schema. 
The following example is a fragment from an XML schema called "family.xsd". It shows a declaration for 
the "person" element. By using the <any> element we can extend (after <lastname>) the content of "person" 
with any element: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
48

 

 

 
 

<xs:element name="person"> 
<xs:complexType> 
<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 
<xs:any minOccurs="0"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 
Now we want to extend the "person" element with a "children" element. In this case we can do so, even if 
the author of the schema above never declared any "children" element. 

 
Look at this schema file, called "children.xsd": 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
targetNamespace="http://www.w3schools.com" 
xmlns="http://www.w3schools.com" 
elementFormDefault="qualified"> 

 
<xs:element name="children"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="childname" type="xs:string" 
maxOccurs="unbounded"/> 

</xs:sequence> 
</xs:complexType> 

</xs:element> 
 

</xs:schema> 
 
The  XML  file  below  (called  "Myfamily.xml"),  uses  components  from  two  different schemas; 
"family.xsd" and "children.xsd": 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 

 
<persons xmlns="http://www.microsoft.com" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.microsoft.com family.xsd 
http://www.w3schools.com children.xsd"> 

 
<person> 

<firstname>Ram</firstname> 
<lastname>Bhagwan</lastname> 
<children> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
49

 

 

 
 

<childname>Luv</childname> 
</children> 

</person> 
 

<person> 
<firstname>Harry</firstname> 
<lastname>Porter</lastname> 

</person> 
 

</persons> 
 
The XML file above is valid because the schema "family.xsd" allows us to extend the 
"person" element with an optional element after the "lastname" element. 

 
The <any> and <anyAttribute> elements are used to make EXTENSIBLE documents! They allow 
documents to contain additional elements that are not declared in the main XML schema. 

 
 
 
XSD The <anyAttribute> Element : 

 
The <anyAttribute> element enables us to extend the XML document with attributes not specified by the 
schema. The following example is a fragment from an XML schema called  "family.xsd".  It  shows  a  
declaration  for  the  "person"  element.  By  us ing  the 
<anyAttribute> element we can add any number of attributes to the "person" element: 

 
<xs:element name="person"> 

<xs:complexType> 
<xs:sequence> 
<xs:element name="firstname" type="xs:string"/> 
<xs:element name="lastname" type="xs:string"/> 

</xs:sequence> 
<xs:anyAttribute/> 

</xs:complexType> 
</xs:element> 

 
Now we want to extend the "person" element with a "gender" attribute. In this case we can do so, even if the 
author of the schema above never declared any "gender" attribut e. 

 
Look at this schema file, called "attribute.xsd": 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
targetNamespace="http://www.w3schools.com" 
xmlns="http://www.w3schools.com" elementFormDefault="qualified"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
50

 

 

 
 

 
<xs:attribute name="gender"> 

<xs:simpleType> 
<xs:restriction base="xs:string"> 
<xs:pattern value="male|female"/> 

</xs:restriction> 
</xs:simpleType> 

</xs:attribute> 
 

</xs:schema> 
 
The XML file below (called "Myfamily.xml"), uses components from two different schemas; "family.xsd" 
and "attribute.xsd": 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 

 
<persons xmlns="http://www.microsoft.com" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:SchemaLocation="http://www.microsoft.com family.xsd 
http://www.w3schools.com attribute.xsd"> 

 
<person gender="female"> 

<firstname>Sita</firstname> 
<lastname>Mata</lastname> 

</person> 
 

<person gender="male"> 
<firstname>Ram</firstname> 
<lastname>Bhagwan</lastname> 

</person> 
 

</persons> 
 
The XML file above is valid because the schema "family.xsd" allows us to add an attribute to the "person" 
element. 

 
The <any> and <anyAttribute> elements are used to make EXTENSIBLE documents! They allow 
documents to contain additional elements that are not declared in the main XML schema. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
51

 

 

 
 
XSL Language: 

 

 
 

XSL  stands  for  EXtensible  Stylesheet  Language.  The  World  Wide  Web  Consortium (W3C) started to 
develop XSL because there was a need for an XML-based Stylesheet Language. 

 
XML does not use predefined tags (we can use any tag-names we like), and therefore the meaning of each tag 
is not well understood. A <table> tag could mean an HTML table, a piece of furniture, or something else - 
and a browser does not know how to display it. 

 
XSL describes how the XML document should be displayed, however its more than a Style 
Sheet Language. XSL consists of three parts: 

 
     XSLT - a language for transforming XML documents 
     XPath - a language for navigating in XML documents 
     XSL-FO - a language for formatting XML documents 

 
XSLT (Extensible Stylesheet Language): 

 

 
 

XSLT stands for XSL Transformations. XSLT is the most important part of XSL. XSLT transforms an XML 
document into another XML document. XSLT uses XPath to navigate in XML documents 

 
XSLT is the most important part of XSL. XSLT is used to transform an XML document into another XML 
document, or another type of document that is recognized by a browser, like HTML and XHTML. Normally 
XSLT does this by transforming each XML element into an (X)HTML element. With XSLT you can 
add/remove elements and attributes to or from the output file. You can also rearrange and sort elements, 
perform tests and make decisions about which elements to hide and display, and a lot more. 

 
A common way to describe the transformation process is to say that XSLT transforms an 
XML source-tree into an XML result-tree. 

 
XSLT uses XPath to find information in an XML document. XPath is used to navigate through elements and 
attributes in XML documents. In the transformation process, XSLT uses  XPath  to  define  parts  of  the  
source  document  that  should  match  one  or  more predefined templates. When a match is found, XSLT 
will transform the matching part of the source document into the result document. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
52

 

 

 
 
XSLT Transformation: 

 
Style Sheet Declaration 

 
The root element that declares the document to be an XSL style sheet is <xsl:stylesheet> or 
<xsl:transform>. <xsl:stylesheet> and <xsl:transform> are completely synonymous and 
either can be used. The correct way to declare an XSL style sheet according to the W3C XSLT 
Recommendation is: 

 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 

 
or: 

 
<xsl:transform version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 

 
To get access to the XSLT elements, attributes and features we must declare the XSLT 
namespace at the top of the document. 

 
The xmlns:xsl="http://www.w3.org/1999/XSL/Transform" points to the official W3C XSLT namespace. If 
you use this namespace, you must also include the attribute version="1.0". 

 
Consider an example below, which we want to transform the following XML document 
("cdcatalog.xml") into XHTML: 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<catalog> 

<cd> 
<title>Empire Burlesque</title> 
<artist>Bob Dylan</artist> 
<country>USA</country> 
<company>Columbia</company> 
<price>10.90</price> 
<year>1985</year> 

</cd> 
</catalog> 

 
We can create an XSL Style Sheet ("cdcatalog.xsl") with a transformation template: 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<xsl:stylesheet version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/"> 

<html> 
<body> 

<h2>My CD Collection</h2> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
53

 

 

 
 

<table border="1"> 
<tr bgcolor="#9acd32"> 
<th>Title</th> 
<th>Artist</th> 

</tr> 
<xsl:for-each select="catalog/cd"> 
<tr> 
<td><xsl:value-of select="title"/></td> 
<td><xsl:value-of select="artist"/></td> 

</tr> 
</xsl:for-each> 

</table> 
</body> 
</html> 

</xsl:template> 
</xsl:stylesheet> 

 
 
 
Now link the XSL Style Sheet to the XML Document. For this, add the XSL style sheet reference to the 
above mentioned XML document ("cdcatalog.xml") as: 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<?xml-stylesheet type="text/xsl" href="cdcatalog.xsl"?> 

<catalog> 
<cd> 
<title>Empire Burlesque</title> 
<artist>Bob Dylan</artist> 
<country>USA</country> 
<company>Columbia</company> 
<price>10.90</price> 
<year>1985</year> 

</cd> 
</catalog> 

 
If you have an XSLT compliant browser it will nicely transform your XML into XHTML. 

 
 
 
XSLT	<xsl:template>	Element:	
	
An XSL style sheet consists of one or more set of rules that are called templates. A template contains 
rules to apply when a specified node is matched. The <xsl:template> element is used to build templates. 

 
The match attribute is used to associate a template with an XML element. The match attribute can also be 
used to define a template for the entire XML document. The value of the match attribute is an XPath 
expression (i.e. match="/" defines the whole document). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
54

 

 

 
 
Consider the example of cdcatalog.xsl, discussed above, it can be explained as; 

 
Since  an  XSL  style  sheet  is  an  XML  document,  it  always  begins  with  the  XML 
declaration: <?xml version="1.0" encoding="ISO-8859-1"?>. 

 
The next element, <xsl:stylesheet>, defines that this document is an XSLT style sheet document (along 
with the version number and XSLT namespace attributes). 

 
The <xsl:template> element defines a template. The match="/" attribute associates the template with the 
root of the XML source document. 

 
The content inside the <xsl:template> element defines some HTML to write to the output. The last two lines 
define the end of the template and the end of the style sheet. 

 
The <xsl:value-of> Element: 

 
The <xsl:value-of> element can be used to extract the value of an XML element and add it to the output 
stream of the transformation. In the above example cdcatalog.xsl, we have used it as; 

 
<xsl:value-of select="catalog/cd/title"/> 
<xsl:value-of select="catalog/cd/artist"/> 

 
The  select  attribute  in  the  example  above,  contains  an  XPath  expression.  An XPath expression works 
like navigating a file system; a forward slash (/) selects subdirectories. 

 
XSLT <xsl:for-each> Element: 

 
The <xsl:for-each> element allows you to do looping in XSLT. It can be used to select every XML 
element of a specified node-set. In the cdcatalog.xsl, we have 

 
<xsl:for-each select="catalog/cd"> 

<tr> 
<td><xsl:value-of select="title"/></td> 
<td><xsl:value-of select="artist"/></td> 

</tr> 
</xsl:for-each> 

 
The value of the select attribute is an XPath expression. An XPath expression works like navigating a file 
system; where a forward slash (/) selects subdirectories. 

 
We can also filter the output from the XML file by adding a criterion to the select attribute in the <xsl:for-
each> element. 

 
<xsl:for-each select="catalog/cd[artist='Bob Dylan']"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
55

 

 

 
 

Legal filter operators are: 
 

     =  (equal) 
     != (not equal) 
     &lt; less than 

     &gt; greater than 
 
In the above example of cdcatalog.xsl; we can use restriction as; 

 
<xsl:for-each select="catalog/cd[artist='Bob Dylan']"> 

<tr> 
<td><xsl:value-of select="title"/></td> 

<td><xsl:value-of select="artist"/></td> 
</tr> 

</xsl:for-each> 
 
XSLT <xsl:sort> Element: 

 

 

To sort the output, simply add an <xsl:sort> element inside the <xsl:for-each> element in the XSL file as; 
 

<xsl:for-each select="catalog/cd"> 
<xsl:sort select="artist"/> 
<tr> 
<td><xsl:value-of select="title"/></td> 
<td><xsl:value-of select="artist"/></td> 

</tr> 
</xsl:for-each> 

 

 
 

XSLT <xsl:if> Element: 
 

 

The <xsl:if> element is used to put a conditional test against the content of the XML file. To add a 
conditional test, add the <xsl:if> element inside the <xsl:for-each> element in the XSL file: 

 
<xsl:if test="expression"> 
...some output if the expression is true... 

</xsl:if> 
 
In above example cdcatalog.xsl, we can write it as; 

 
<xsl:for-each select="catalog/cd"> 

<xsl:if test="price &gt; 10"> 
<tr> 
<td><xsl:value-of select="title"/></td> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
56

 

 

 
 

<td><xsl:value-of select="artist"/></td> 
</tr> 

</xsl:if> 
</xsl:for-each> 

 

 
 

XSLT <xsl:choose> Element: 
 

 

The <xsl:choose> element is used in conjunction with <xsl:when> and <xsl:otherwise> to express multiple 
conditional tests. The syntax is as; 

 
<xsl:choose> 

<xsl:when test="expression"> 
... some output ... 

</xsl:when> 
<xsl:otherwise> 
... some output .... 

</xsl:otherwise> 
</xsl:choose> 

 
In the above example of cdcatalog.xsl, we can embed this element as; 

 
<xsl:for-each select="catalog/cd"> 

<tr> 
<td><xsl:value-of select="title"/></td> 

<xsl:choose> 
<xsl:when test="price &gt; 10"> 
<td bgcolor="#ff00ff"> 
<xsl:value-of select="artist"/></td> 

</xsl:when> 
<xsl:otherwise> 
<td><xsl:value-of select="artist"/></td> 

</xsl:otherwise> 
</xsl:choose> 

</tr> 
</xsl:for-each> 

 
We can put sequence of the <xsl:when> as; 

 
<xsl:for-each select="catalog/cd"> 

<tr> 
<td><xsl:value-of select="title"/></td> 

<xsl:choose> 
<xsl:when test="price &gt; 10"> 
<td bgcolor="#ff00ff"> 
<xsl:value-of select="artist"/></td> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
57

 

 

 
 

</xsl:when> 
<xsl:when test="price &gt; 9"> 
<td bgcolor="#cccccc"> 
<xsl:value-of select="artist"/></td> 

</xsl:when> 
<xsl:otherwise> 
<td><xsl:value-of select="artist"/></td> 

</xsl:otherwise> 
</xsl:choose> 

</tr> 
</xsl:for-each> 

 
XPath: 

 
XPath is a language for finding information in an XML document.   It is a syntax for defining parts of an 
XML document which uses path expressions to navigate in XML documents. XPath contains a library of 
standard functions. It is a major element in XSLT. 

 
 
 
XML documents are treated as trees of nodes. The topmost element of the tree is called the root element. 
XPath uses path expressions to select nodes or node-sets in an XML document. The node is selected by 
following a path or steps. 

 
We will use the following XML document in the examples below. 

 
<?xml version="1.0" encoding="ISO-8859-1"?> 

 
<bookstore> 

 
<book> 

<title lang="eng">Harry Potter</title> 
<price>29.99</price> 

</book> 
 

<book> 
<title lang="eng">Learning XML</title> 
<price>39.95</price> 

</book> 
 

</bookstore> 
 
 
 
Selecting Nodes: 

 
XPath uses path expressions to select nodes in an XML document. The node is selected by following a path 
or steps. The most useful path expressions are listed below: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
58

 

 

 
 
Expression                  Description 
nodename                    Selects all child nodes of the named node 

/                                    Selects from the root node 

// Selects nodes in the document from the current node that match the selection no 
matter where they are 

.                                    Selects the current node 

..                                   Selects the parent of the current node 

@                                 Selects attributes 
 

 
In the table below we have listed some path expressions and the result of the expressions: 

 

 
Path Expression         Result 
bookstore                     Selects all the child nodes of the bookstore element 

/bookstore                    Selects the root element bookstore 
 

Note: If the path starts with a slash ( / ) it always represents an absolute path to 
an element! 

bookstore/book            Selects all book elements that are children of bookstore 

//book                          Selects all book elements no matter where they are in the document bookstore//book           

Selects all book elements that are descendant of the bookstore 
element, no matter where they are under the bookstore element 

//@lang                        Selects all attributes that are named lang 
 
 
 
Predicates: 

 
Predicates are used  to  find  a  specific  node or a node that  contains a  specific  value. Predicates are 
always embedded in square brackets. In the table below we have listed some path expressions with predicates 
and the result of the expressions: 

 

 
Path Expression                               Result 

/bookstore/book[1]                            Selects the first book element that is the child of the bookstore 
element. 

 
Note: IE5 and later has implemented that [0] should 
be the first node, but according to the W3C standard it should have been 
[1]!! 

/bookstore/book[last()]                      Selects the last book element that is the child of the bookstore element 

/bookstore/book[last()-1]                  Selects the last but one book element that is the child of the bookstore 
element 

/bookstore/book[position()<3]          Selects the first two book elements that are children of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
59

 

 

 
 

the bookstore element 

//title[@lang]                                     Selects all the title elements that have an attribute named lang 

//title[@lang='eng']                            Selects all the title elements that have an attribute named lang with a 
value of 'eng' 

/bookstore/book[price>35.00]           Selects all the book elements of the bookstore element that have a price 
element with a value greater than 

35.00 

/bookstore/book[price>35.00]/title   Selects all the title elements of the book elements of the bookstore 
element that have a price element with a value greater than 35.00 

 
 
Selecting Unknown Nodes: 

 
XPath wildcards can be used to select unknown XML elements. 

 

 
Wildcard Description 
*               Matches any element node 

@*           Matches any attribute node node()      Matches 

any node of any kind 

 
In the table below we have listed some path expressions and the result of the expressions: 

 

 
Path Expression Result 
/bookstore/*        Selects all the child nodes of the bookstore element 

//*                        Selects all elements in the document 

//title[@*]            Selects all title elements which have any attribute 
 
 
 
Selecting Several Paths: 

 
By using the | operator in an XPath expression you can select several paths. In the table below we have 
listed some path expressions and the result of the expressions: 

 

 
Path Expression                              Result 

//book/title | //book/price                  Selects all the title AND price elements of all book elements 

//title | //price                                     Selects all the title AND price elements in the document 

/bookstore/book/title | //price            Selects all the title elements of the book element of the bookstore element 
AND all the price elements in the document 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
60

 

 

 
 
XQuery: 

 
XQuery is to XML what SQL is to database tables. XQuery is designed to query XML data 
- not just XML files, but anything that can appear as XML, including databases. XQuery is 
a language for finding and extracting elements and attributes from XML documents. Some basic 

syntax rules: 

     XQuery is case-sensitive 
     XQuery elements, attributes, and variables must be valid XML names 
     An XQuery string value can be in single or double quotes 
     An XQuery variable is defined with a $ followed by a name, e.g. $bookstore 
     XQuery comments are delimited by (: and :), e.g. (: XQuery Comment :) 

 
Consider a XML example; 

 
 
 
 
<bookstore> 

 
<book category="CHILDREN"> 

<title lang="en">Harry Potter</title> 
<author>J K. Rowling</author> 
<year>2005</year> 
<price>29.99</price> 

</book> 
 
<book> 

 
………… 

 
……….. 

 
</book> 

 
 
 
 
</bookstore 

 
XQuery to extract the data can be written as in following example; 

 
for $x in doc("books.xml")/bookstore/book return if 
($x/@category="CHILDREN") then 
<child>{data($x/title)}</child> 
else <adult>{data($x/title)}</adult> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
61

 

 

 
 
Notes on the "if-then-else" syntax: parentheses around the if expression are required. else is required, but 
it can be just else (). 

 
The result of the example above will be: 

 
<child>Harry Potter</child> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
62

 

 

 
 
XML DOM: 

 
The XML DOM is: 

 
     A standard object model for XML 
     A standard programming interface for XML 
     Platform- and language-independent 
     A W3C standard 

 
The  XML  DOM  defines  the  objects  and  properties  of  all  XML  elements,  and  the methods 
(interface) to access them. In other words: The XML DOM is a standard for how to get, change, add, or 
delete XML elements. 

 
The XML DOM views an XML document as a tree-structure. All elements can be accessed through the DOM 
tree. Their content (text and attributes) can be modified or deleted, and new elements can be created. The 
elements, their text, and their attributes are all known as nodes.  The node tree shows the set of nodes, and 
the connections between them. The tree starts at the root node and branches out to the text nodes at the lowest 
level of the tree. 

 
All modern browsers have a build-in XML parser that can be used to read and manipulate XML. With the 
XML DOM properties and methods, you can access every node in an XML document. The XML DOM 
contains methods (functions) to traverse XML trees, access, insert, and delete nodes. However, before an 
XML document can be accessed and manipulated, it must be loaded into an XML DOM object. An XML 
parser reads XML, and converts it into an XML DOM object that can be accessed with JavaScript.   Most 
browsers have a built-in XML parser. 

 
Following shows a DOM tree example; 

 

 

 
 
What will be the equivalent XML file for this?? 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter- XML

Jagdish Bhatta 
63

 

 

 
 
SAX: 

 
SAX (Simple API for XML) is an event-based sequential access parser API developed by the XML-DEV 
mailing list for XML documents. SAX provides a mechanism for reading data from an XML document that 
is an alternative to that provided by the Document Object Model (DOM). Where the DOM operates on the 
document as a whole, SAX parsers operate on each piece of the XML document sequentially. 

 
Unlike DOM, there is no formal specification for SAX. The Java implementation of SAX is considered to 
be normative. It is used for state-independent processing of XML documents, in contrast to StAX 
(Streaming API for XML) that processes the documents state-dependently. 

 
SAX parsers have certain benefits over DOM-style parsers. The quantity of memory that a SAX parser must 
use in order to function is typically much smaller than that of a DOM parser. DOM parsers must have the 
entire tree in memory before any processing can begin, so the amount of memory used by a DOM parser 
depends entirely on the size of the input data. The memory footprint of a SAX parser, by contrast, is based 
only on the maximum depth of the XML file (the maximum depth of the XML tree) and the maximum 
data stored in XML attributes on a single XML element. Both of these are always sma ller than the size of 
the parsed tree itself. 

 
Because of the event-driven nature of SAX, processing documents can often be faster than DOM-style 
parsers. Memory allocation takes time, so the larger memory footprint of the DOM is also a performance 
issue. Due to the nature of DOM, streamed reading from disk is impossible. Processing XML documents 
larger than main memory is also impossible with DOM parsers, but can be done with SAX parsers. 
However, DOM parsers may make use of disk space as memory to sidestep this limitation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

1

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Unit 4/5: Server side scripting with ASP.NET] 
 

Web Technology (CSC-353) 
 

Jagdish Bhatta 
 

 

Central Department of Computer Science & Information Technology 
 

Tribhuvan University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

2

 

 

 
 
 
 
 

.NET an Overview: ASP.net 

and VB.net 

ASP.NET stands for Active Server Pages .NET, and VB.NET stands for Visual Basic.NET. VB.NET, 

put simply, is a programming language, and ASP.NET is a technology used to render dynamic web content. 

An ASP.NET web site is typically made up of code written in either VB.NET or C# (C Sharp). When 

creating a web site with VB.NET, you are actually creating an ASP.NET application using VB.NET. This 

is different from a traditional Active Server Page (ASP)  page,  in  that  an  ASP.NET  application  is  

written  using  fully-featured  programming languages with full functionality, like VB.NET, instead of 

scripting languages like Visual Basic Script (VBScript). 

 
 
Microsoft .net 

 

Microsoft .NET is a package of software that consists of clients, servers, and development tools. This 

package includes the Microsoft .NET Framework, development tools such as Visual Studio 

2008, a set of server applications such as Microsoft Windows Server 2003 and Microsoft SQL Server, and 

client-side applications such as Windows XP and Microsoft Office. Microsoft .NET Framework includes 

many other subcomponents that allow software that has been written in different languages to work together 

by establishing rules for language independence. Using the Microsoft .NET Framework as a base, software 

development toolmakers can create development tools for different languages such as COBOL or C++. 

Microsoft itself used the .NET Framework to create VS, which is a development tool used to create software 

using the VB or C# programming languages. 

 
 
The Microsoft .NET Framework also provides many common functions that previously needed to be built 

by the developer. This includes access to the file system, access to the registry, and easier development  

when using the  Windows Application Programming  Interfaces (API) to access operating system–level 

functionality. This allows the developer to concentrate more on business problems, instead of worrying how 

to access low-level windows functionality. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

3

 

 

 
 
 
 
The Common Language Runtime 

 

The Microsoft Common Language Runtime (CLR) is one of the components within the .NET Framework. 

The CLR provides runtime services, including loading and execution of code. The  CLR  essentially  

takes  the  language-specific  code  that  was  written  and  translates  it Microsoft Intermediate Language 

(MSIL) code. The resulting code is the same, no matter what language the original code was written in. 

This is what allows code written with VB to work with code written in C#. This is also the most important 

aspect of the .NET Framework for a software development company, because one developer can write code 

in VB and another developer can write code with C#, but the application will still work without a problem, 

allowing companies to use their existing  skill sets. Without this framework and the MSIL, an entire 

application would need to be built using the same language. This would require a software development  

company to  have a full staff of developers that  know a specific development language, such as VB. A 

single program, written in multiple languages, works mainly because the framework contains a set of 

common data types that must be used by all languages building applications with the .NET Framework. This 

set of data types is the Common Type System (CTS), which defines how types are declared, used, and 

managed. To accommodate the CLR, some of the data types within languages such as VB needed to be 

changed so they could work better with data types from other languages such as C++. 

 
 
Assemblies 

 

An assembly is the main component of a .NET Framework application and is a collection of all of the 

functionality for the particular application. The assembly is created as either a .dll file for web sites or an 

.exe file for Windows applications, and it contains all of the MSIL code to be used by the framework. 

Without the assembly there is no application. The creation of an assembly is automatically performed by VS. 

It is possible to create applications for the .NET Framework without VS—however, you need to use the 

various tools that come with the .NET Framework Software Development Kit (SDK) to create the assemblies 

and perform other tasks that are automatically done by VS. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

4

 

 

 
 
 
 
How Web Servers Execute ASP Files 

 

When a site visitor requests a Web page address, the browser contacts the Web server specified in the 

address URL and makes a request for the page by formulating a HTTP request, which is sent  to  the Web 

server.  The  Web server  on receiving  the request  determines the  file type requested and passes 

processing to the appropriate handler. ASP.NET files are compiled, if necessary, into .NET Page classes and 

then executed, with the results sent to the client’s browser. Compilation means that on first load ASP.NET 

applications take longer to display than previous versions  of  ASP,  but  once  compiled  they  are  

noticeably  faster.  The  browser  can  request 

information from and send information to the server using two HTTP methods, GET and POST. 
 

 
 

Web Server 
 

 
 
 

get post 

 
 

Response 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

5

 

 

ASP.net 
 
Request 
 
 
 
Response 
 
 

File System 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

6

 

 

File System

ADO.net 
 
 
 
 
 
 
 
 
 

Database 
 

 
 
 
 

When the server receives this request, it will find the page that was requested using the path information 

specified, and the relevant system will process the  page. When the response is complete, it is flushed 

back out to the user’s browser, usually as HTML but not necessarily, and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

7

 

 

 
 
the browser renders this page as it arrives as the page on screen. The process of compiling and delivering 

ASP.NET pages goes through the following stages: 

1.   IIS matches the URL in the request against a file on the physical file system (hard disk) by 

translating the virtual path (for example, /site/ index.aspx) into a path relative to the site’s Web root 

(for example, d:\domains\thisSite\wwwroot\site\index.aspx). 

2.   Once the file is found, the file extension (.aspx) is matched against a list of known file types for 

either sending on to the visitor or for processing. 

3.   If this is first visit to the page since the file was last changed, the ASP code is compiled into an 

assembly using the Common Language Runtime compiler, into MSIL, and then into machine-specific 

binary code for execution. 

4.   The binary code is a .NET class .dll and is stored in a temporary location. 
 

5.   Next time the page is requested the server will check to see if the code has changed. If the code is the 

same, then the compilation step is skipped and the previously compiled class code is executed; 

otherwise, the class is deleted and recompiled from the new source. 

6.   The compiled code is executed and the request values are interpreted, such as form input fields or 

URL parameters. 

7.   If the developer has used Web forms, then the server can detect what software the visitor is using and 

render pages that are tailored to the visitors’ requirements, for example, returning  Netscape  specific  

code,  or  Wireless  Markup  Language  (WML)  code  for mobiles. 

8.   Any results are delivered back to the visitor’s Web browser. 
 

9.   Form elements are converted into client side markup and script, HTML and JavaScript for Web 

browsers, and WML and WMLScript for mobiles, for example. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

8

 

 

 
 
 
 
 
 

Request 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

9

 

 

 

Server Finds 
File 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

10

 

 

 

ASP.net 
Process 
 
 
 
 
 
 
 
 
 
Compilation Errors 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

11

 

 

 

 
Compile 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

12

 

 

Yes 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

13

 

 

 
 
Changed? 
 

 
 

No 
Save 

 
 
 
 
 

Response 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

14

 

 

Execute 
 
 
 
 
 
 

What is Classic ASP and ASP.net? 
 

Microsoft's previous server side scripting technology ASP (Active Server Pages) is now often called  classic  

ASP.    ASP  3.0  was  the  last  version  of  classic  ASP.  ASP.NET  is  the  next generation  ASP,  but  it's  

not  an  upgraded  version  of  ASP.    ASP.NET  is  an  entirely  new technology for server-side scripting. It 

was written from the ground up and is not backward compatible with classic ASP. ASP.NET is a server side 

scripting technology that enables scripts (embedded in web pages) to be executed by an Internet server. 

    ASP.NET is a Microsoft Technology 
 

    ASP stands for Active Server Pages 
 

    ASP.NET is a program that runs inside IIS 
 

    IIS (Internet Information Services) is Microsoft's Internet server 
 

    IIS comes as a free component with Windows servers 
 

    IIS is also a part of Windows 2000 and XP Professional 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

15

 

 

 
 
The .NET Framework consists of 3 main parts: 

 

Programming languages: 
 

    C# (Pronounced C sharp) 
 

    Visual Basic (VB .NET) 
 

    J# (Pronounced J sharp) 
 

Server technologies and client technologies: 
 

    ASP .NET (Active Server Pages) 
 

    Windows Forms (Windows desktop solutions) 
 

   Compact Framework (PDA / Mobile solutions) 

Development environments: 

    Visual Studio .NET (VS .NET) 
 

    Visual Web Developer 
 
 
 
Features of ASP.net: 

 

 ASP.NET  Controls:  ASP.NET  contains  a  large  set  of HTML  controls.  Almost  all 
 

HTML elements on a page can be defined as ASP.NET control objects that  can be controlled 

by scripts. ASP.NET also contains a new set of object-oriented input controls, like programmable list-

boxes and validation controls. A new data grid control supports sorting, data paging, and everything 

you can expect from a dataset control. 

  Event Aware Controls: All ASP.NET objects on a Web page can expose events that can be 

processed by ASP.NET code. Load, Click and Change events handled by code makes coding much 

simpler and much better organized. 

  ASP.NET Components: ASP.NET components are heavily based on XML. 
 

 User Authentication: ASP.NET supports form-based user authentication, cookie management, and 

automatic redirecting of unauthorized logins. 

  User Accounts and Roles: ASP.NET allows user accounts and roles, to give each user 
 

(with a given role) access to different server code and executables. 
 

  High Scalability: Much has been done with ASP.NET to provide greater scalability. 
 

Server-to-server communication has been greatly enhanced, making it possible to scale 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

16

 

 

 
 

an application over  several servers. One example of this  is the ability to  run XML 
 

parsers, XSL transformations and even resource hungry session objects on other servers. 
 

  Compiled Code: The first request for an ASP.NET page on the server will compile the ASP.NET 

code and keep a cached copy in memory. The result of this is greatly increased performance. 

  Easy  Configuration:  Configuration  of  ASP.NET  is  done  with  plain  text   files. 
 

Configuration files can be uploaded or changed while the application is running. No need to restart 

the server. No more metabase or registry puzzle. 

  Easy Deployment: No more server-restart to deploy or replace compiled code. ASP.NET 
 

simply redirects all new requests to the new code. 
 

  Compatibility: ASP.NET is not fully compatible with earlier versions of ASP, so most of the old 

ASP code will need some changes to run under ASP.NET. To overcome this problem, ASP.NET uses 

a new file extension ".aspx". This will make ASP.NET applications able to run side by side with 

standard ASP applications on the same server. 
 
 
 

Creating ASP.NET Application 
 

Simple HTML page that will display "Hello W3Schools" in an Internet browser can be written like this: 

<html> 
 
 
 
 
 
 
 
 
 
 
 

</html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

17

 

 

 

<body bgcolor="yellow"> 
 

<center> 
 

<h2>Hello W3Schools!</h2> 
 

</center> 
 

</body> 
 

The simplest way to convert an HTML page into an ASP.NET page is to copy the HTML file to a new file 

with an .aspx extension 

<html> 
 

<body bgcolor="yellow"> 
 

<center> 
 

<h2>Hello W3Schools!</h2> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

18

 

 

 
 
 
 
 
 

</html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

19

 

 

</center> 
 

</body> 
 

Fundamentally an ASP.NET page is just the same as an HTML page. An HTML page has the extension 

.htm. If a browser requests an HTML page from the server, the server sends the page to the browser 

without any modifications. An ASP.NET page has the extension .aspx. If a browser requests an 

ASP.NET page, the server processes any executable code in the page, before the result is sent back to the 

browser. The ASP.NET page above does not contain any executable code, so nothing is executed. In the next 

examples we will add some executable code to the page to demonstrate the difference between static HTML 

pages and dynamic ASP pages. 

 
 
Dynamic Page in Classic ASP and ASP.net 

 

To demonstrate how ASP can display pages with dynamic content, we have added some executable code (in 

red) to the previous example: 

<html> 
 

<body bgcolor="yellow"> 
 

<center> 
 

<h2>Hello W3Schools!</h2> 
 

<p><%Response.Write(now())%></p> 
 

</center> 
 

</body> 
 

</html> 
 

The code inside the <% --%> tags is executed on the server. Response.Write is ASP code for writing 

something to the HTML output stream. Now() is a function returning the servers current date and time.  This 

same code can also be used as ASP.NET page. The code above illustrates a limitation in Classic ASP: The 

code block has to be placed where you want the output to appear. With Classic ASP it is impossible to 

separate executable code from the HTML itself. This makes the page difficult to read, and difficult to 

maintain. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

20

 

 

 
 

ASP.NET - Server Controls 
 

ASP.NET has solved the "spaghetti-code" problem described above with server controls. Server controls are 

tags that are understood by the server. There are three kinds of server controls: 

    HTML Server Controls - Traditional HTML tags 
 

    Web Server Controls - New ASP.NET tags 
 

    Validation Server Controls - For input validation 
 
 
 

ASP.NET - HTML Server Controls 
 

HTML server controls are HTML tags understood by the server. HTML elements in ASP.NET files are, by 

default, treated as text. To make these elements programmable, add a runat="server" attribute to the HTML 

element. This attribute indicates that the element should be treated as a server control. The id attribute is 

added to identify the server control. The id reference can be used to manipulate the server control at run 

time. All HTML server controls must be within a 

<form> tag with the runat="server" attribute. The runat="server" attribute indicates that the form should be 

processed on the server. It also indicates that the enclosed controls can be accessed by server scripts. 

In the following example we declare an HtmlAnchor server control in an .aspx file. Then we manipulate the 

HRef attribute of the HtmlAnchor control in an event handler (an event handler is a subroutine that executes 

code for a given event). The Page_Load event is one of many events that ASP.NET understands. 

<script runat="server"> Sub Page_Load 

link1.HRef="http://www.w3schools.com" End Sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<a id="link1" runat="server">Visit W3Schools!</a> 
 

</form> 
 

</body> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

21

 

 

 
 

</html> 
 

The executable code itself has been moved outside the HTML. 
 
 
 

ASP.NET - Web Server Controls 
 

Web server controls are special ASP.NET tags understood by the server. Like HTML server controls, Web 

server controls are also created on the server and they require a runat="server" attribute to work. However, 

Web server controls do not necessarily map to any existing HTML elements and they may represent more 

complex elements. The syntax for creating a Web server control is: 

<asp:control_name id="some_id" runat="server" /> 
 

In the following example we declare a Button server control in an .aspx file. Then we create an event handler 

for the Click event which changes the text on the button: 

<script runat="server"> 
 

Sub submit(Source As Object, e As EventArgs) 
 

button1.Text="You clicked me!" End Sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:Button id="button1" Text="Click me!" runat="server" OnClick="submit"/> 
 

</form> 
 

</body> 
 

</html> 
 
 
 

ASP.NET - Validation Server Controls 
 

Validation server controls are used to validate user-input. If the user-input does not pass validation,  it will 

display an error message to the user.  Each validation control performs a specific type of validation (like 

validating against a specific value or a range of values). By default, page validation is performed when a 

Button, ImageButton, or LinkButton control is 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

22

 

 

 
 
clicked.  You  can  prevent  validation  when  a  button  control  is  clicked  by  setting  the 

 

CausesValidation property to false. The syntax for creating a Validation server control is: 
 

<asp:control_name id="some_id" runat="server" /> 
 

In  the  following  example  we  declare  one  TextBox  control,  one  Button  control,  and  one 
 

RangeValidator control in an .aspx file. If validation fails, the text "The value must be from 1 to 
 

100!" will be displayed in the RangeValidator control: 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<p>Enter a number from 1 to 100: 
 

<asp:TextBox id="tbox1" runat="server" /> 
 

<br /><br /> 
 

<asp:Button Text="Submit" runat="server" /> 
 

</p> 
 

<p> 
 

<asp:RangeValidator  ControlToValidate="tbox1" MinimumValue="1" 

MaximumValue="100" Type="Integer" Text="The value must be from 1 to 100!" 

runat="server" /> 

</p> 
 

</form> 
 

</body> 
 

</html> 
 
 
 
ASP.NET Web Forms 

 

All server controls must appear within a <form> tag, and the <form> tag must contain the runat="server" 

attribute. The runat="server" attribute indicates that the form should be processed on the server. It also 

indicates that the enclosed controls can be accessed by server scripts: 

<form runat="server"> 
 

...HTML + server controls 
 

</form> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

23

 

 

 
 
The form is always submitted to the page itself. If you specify an action attribute, it is ignored. If you omit 

the method attribute, it will be set to method="post" by default. Also, if you do not specify the name and id 

attributes, they are automatically assigned by ASP.NET.  An .aspx page can only contain ONE <form 

runat="server"> control!. If you select view source in an .aspx page containing a form with no name, method, 

action, or id attribute specified, you will see that ASP.NET has added these attributes to the form. It looks 

something like this: 

<form name="_ctl0" method="post" action="page.aspx" id="_ctl0"> 
 

...some code 
 

</form> 
 
 
 

Submitting a Form 
 

A form is most often submitted by clicking on a button. The Button server control in ASP.NET 
 

has the following format: 
 

<asp:Button id="id" text="label" OnClick="sub" runat="server" /> 
 

The id attribute defines a unique name for the button and the text attribute assigns a label to the button. The 

onClick event handler specifies a named subroutine to execute. In the following example we declare a Button 

control in an .aspx file. A button click runs a subroutine which changes the text on the button: 

 
 
Maintaining the ViewState 

 

When a  form is  submitted  in classic  ASP,  all  form values are cleared.  Suppose you  have submitted a 

form with a lot of information and the server comes back with an error. You will have to go back to the 

form and correct the information. You click the back button, and what happens.......ALL form values are 

CLEARED, and you will have to start all over again! The site did not maintain your ViewState. When a 

form is submitted in ASP .NET, the form reappears in the browser window together with all form values. 

How come? This is because ASP .NET maintains your ViewState. The ViewState indicates the status of the 

page when submitted to the server. The status is defined through a hidden field placed on each page with a 

<form runat="server"> control. The source could look something like this: 

<form name="_ctl0" method="post" action="page.aspx" id="_ctl0"> 
 

<input type="hidden" name="    VIEWSTATE" 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

24

 

 

 
 

value="dDwtNTI0ODU5MDE1Ozs+ZBCF2ryjMpeVgUrY2eTj79HNl4Q=" /> 
 

.....some code 
 

</form> 
 

Maintaining the ViewState is the default setting for ASP.NET Web Forms. If you want to NOT maintain the 

ViewState, include the directive <%@ Page EnableViewState="false" %> at the top of an .aspx page or 

add the attribute EnableViewState="false" to  any control.  Look at the following .aspx file. It 

demonstrates the "old" way to do it. When you click on the submit button, the form value will disappear: 

<html> 
 

<body> 
 

<form action="demo_classicasp.aspx" method="post"> Your name: 

<input type="text" name="fname" size="20"> 

<input type="submit" value="Submit"> 
 

</form> 
 

<% 
 

dim fname fname=Request.Form("fname") 

If fname<>"" Then 

Response.Write("Hello " & fname & "!") End If 

%> 
 

</body> 
 

</html> 
 

Here is the new ASP .NET way. When you click on the submit button, the form value will NOT 
 

disappear: 
 

<script runat="server"> 
 

Sub submit(sender As Object, e As EventArgs) 
 

lbl1.Text="Hello " & txt1.Text & "!" End Sub 

</script> 
 

<html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

25

 

 

 
 

<body> 
 

<form runat="server"> 
 

Your name: <asp:TextBox id="txt1" runat="server" /> 
 

<asp:Button OnClick="submit" Text="Submit" runat="server" /> 
 

<p><asp:Label id="lbl1" runat="server" /></p> 
 

</form> 
 

</body> 
 

</html> 
 
 
 

The TextBox Control 
 

The TextBox control is used to create a text box where the user can input text. The TextBox control's 

attributes and properties are listed in our web controls reference page. The example below demonstrates some 

of the attributes you may use with the TextBox control: 

<html> 
 

<body> 
 

<form runat="server"> A basic 

TextBox: 

<asp:TextBox id="tb1" runat="server" /> 
 

<br /><br /> 
 

A password TextBox: 
 

<asp:TextBox id="tb2" TextMode="password" runat="server" /> 
 

<br /><br /> 
 

A TextBox with text: 
 

<asp:TextBox id="tb4" Text="Hello World!" runat="server" /> 
 

<br /><br /> 
 

A multiline TextBox: 
 

<asp:TextBox id="tb3" TextMode="multiline" runat="server" /> 
 

<br /><br /> 
 

A TextBox with height: 
 

<asp:TextBox id="tb6" rows="5" TextMode="multiline" 

runat="server" /> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

26

 

 

 
 

<br /><br /> 
 

A TextBox with width: 
 

<asp:TextBox id="tb5" columns="30" runat="server" /> 
 

</form> 
 

</body> 
 

</html> 
 
 
 

Add a Script 
 

The contents and settings of a TextBox control may be changed by server scripts when a form is submitted. 

A form can be submitted by clicking on a button or when a user changes the value in the TextBox control. In 

the following example we declare one TextBox control, one Button control, and one Label control in an .aspx 

file. When the submit button is triggered, the submit subroutine is executed. The submit subroutine writes a 

text to the Label control: 

<script runat="server"> 
 

Sub submit(sender As Object, e As EventArgs) 
 

lbl1.Text="Your name is " & txt1.Text 
 

End Sub 
 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> Enter your 

name: 

<asp:TextBox id="txt1" runat="server" /> 
 

<asp:Button OnClick="submit" Text="Submit" runat="server" /> 
 

<p><asp:Label id="lbl1" runat="server" /></p> 
 

</form> 
 

</body> 
 

</html> 
 

In the following example we declare one TextBox control and one Label control in an .aspx file. When you 

change the value in the TextBox and either click outside the TextBox or press the Tab key, the change 

subroutine is executed. The submit subroutine writes a text to the Label control: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

27

 

 

 
 

<script runat="server"> 
 

Sub change(sender As Object, e As EventArgs) 

lbl1.Text="You changed text to " & txt1.Text End Sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> Enter your 

name: 

<asp:TextBox id="txt1" runat="server" text="Hello 

World!" 

ontextchanged="change" autopostback="true"/> 
 

<p><asp:Label id="lbl1" runat="server" /></p> 
 

</form> 
 

</body> 
 

</html> 
 
 
 

The Button Control 
 

The Button control is used to display a push button. The push button may be a submit button or a command 

button. By default, this control is a submit button. A submit button does not have a command name and it 

posts the page back to the server when it is clicked. It is possible to write an event handler to control the 

actions performed when the submit button is clicked. A command button has a command name and allows 

you to create multiple Button controls on a page. It is possible to write an event handler to control the actions 

performed when the command button is clicked. The example below demonstrates a simple Button control: 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:Button id="b1" Text="Submit" runat="server" /> 
 

</form> 
 

</body> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

28

 

 

 
 

</html> 
 
 
 

Data Binding 
 

The following controls are list controls which support data binding: 
 

    asp:RadioButtonList 
 

    asp:CheckBoxList 
 

    asp:DropDownList 
 

    asp:Listbox 
 

The  selectable  items  in  each  of  the  above  controls  are  usually  defined  by  one  or  more asp:ListItem 

controls, like this: 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="countrylist" runat="server"> 
 

<asp:ListItem value="N" text="Norway" /> 
 

<asp:ListItem value="S" text="Sweden" /> 
 

<asp:ListItem value="F" text="France" /> 
 

<asp:ListItem value="I" text="Italy" /> 
 

</asp:RadioButtonList> 
 

</form> 
 

</body> 
 

</html> 
 

However, with data binding we may use a separate source, like a database, an XML file, or a script to fill 

the list with selectable items. By using an imported source, the data is separated from the HTML, and any 

changes to the items are made in the separate data source. 

 
 
The ArrayList object is a collection of items containing a single data value. Items are added to the 

ArrayList with the Add() method. The following code creates a new ArrayList object named mycountries and 

four items are added: 

<script runat="server"> Sub 

Page_Load 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

29

 

 

 
 

if Not Page.IsPostBack then 
 

dim mycountries=New ArrayList 

mycountries.Add("Norway") 

mycountries.Add("Sweden") 

mycountries.Add("France") 

mycountries.Add("Italy") 

end if end sub 

</script> 
 

By default, an ArrayList object contains 16 entries. An ArrayList can be sized to its final size with the 

TrimToSize() method: 

<script runat="server"> Sub 

Page_Load 

if Not Page.IsPostBack then 
 

dim mycountries=New ArrayList 

mycountries.Add("Norway") 

mycountries.Add("Sweden") 

mycountries.Add("France") 

mycountries.Add("Italy") 

mycountries.TrimToSize() 

end if end sub 

</script> 
 

An ArrayList can also be sorted alphabetically or numerically with the Sort() method: 
 

<script runat="server"> Sub 

Page_Load 

if Not Page.IsPostBack then 
 

dim mycountries=New ArrayList 

mycountries.Add("Norway") 

mycountries.Add("Sweden") 

mycountries.Add("France") 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

30

 

 

 
 

mycountries.Add("Italy") 

mycountries.TrimToSize() 

mycountries.Sort() 

end if end sub 

</script> 
 

To sort in reverse order, apply the Reverse() method after the Sort() method: 
 

script runat="server"> Sub 

Page_Load 

if Not Page.IsPostBack then 
 

dim mycountries=New ArrayList 

mycountries.Add("Norway") 

mycountries.Add("Sweden") 

mycountries.Add("France") 

mycountries.Add("Italy") 

mycountries.TrimToSize() mycountries.Sort() 

mycountries.Reverse() 

end if end sub 

</script> 
 

An ArrayList object may automatically generate the text and values to the following controls: 
 

    asp:RadioButtonList 
 

    asp:CheckBoxList 
 

    asp:DropDownList 
 

    asp:Listbox 
 

To bind data to a RadioButtonList control, first create a RadioButtonList control (without any 

asp:ListItem elements) in an .aspx page: 

<script runat="server"> Sub 

Page_Load 

if Not Page.IsPostBack then 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

31

 

 

 
 

dim mycountries=New ArrayList 

mycountries.Add("Norway") 

mycountries.Add("Sweden") 

mycountries.Add("France") 

mycountries.Add("Italy") 

mycountries.TrimToSize() mycountries.Sort() 

rb.DataSource=mycountries rb.DataBind() 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" /> 
 

</form> 
 

</body> 
 

</html> 
 

The DataSource property of the RadioButtonList control is set to the ArrayList and it defines the data source 

of the RadioButtonList control. The DataBind() method of the RadioButtonList control binds the data source 

with the RadioButtonList control.  The data values are used as both the Text and Value properties for the 

control. 

 
 
Creating a HashTable 

 

The Hashtable object contains items in key/value pairs. The keys are used as indexes, and very quick searches 

can be made for values by searching through their keys. Items are added to the Hashtable with the Add() 

method. The following code creates a Hashtable named mycountries and four elements are added: 

<script runat="server"> Sub 

Page_Load 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

32

 

 

 
 

if Not Page.IsPostBack then 
 

dim mycountries=New Hashtable 

mycountries.Add("N","Norway") 

mycountries.Add("S","Sweden") 

mycountries.Add("F","France") 

mycountries.Add("I","Italy") 

end if end sub 

</script> 
 

A Hashtable object may automatically generate the text and values to the following controls: 
 

    asp:RadioButtonList 
 

    asp:CheckBoxList 
 

    asp:DropDownList 
 

    asp:Listbox 
 

To bind data to a RadioButtonList control, first create a RadioButtonList control (without any 

asp:ListItem elements) in an .aspx page: 

 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" /> 
 

</form> 
 

</body> 
 

</html> 
 
 
 
Then add the script that builds the list: 

 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New Hashtable 

mycountries.Add("N", "Norway") 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

33

 

 

 
 

mycountries.Add("S", "Sweden") 

mycountries.Add("F", "France") 

mycountries.Add("I", "Italy") 

rb.DataSource=mycountries 

rb.DataValueField="Key" 

rb.DataTextField="Value" rb.DataBind() 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" /> 
 

</form> 
 

</body> 
 

</html> 
 

Then we add a sub routine to be executed when the user clicks on an item in the RadioButtonList control. 

When a radio button is clicked, a text will appear in a label: 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New Hashtable 

mycountries.Add("N", "Norway") 

mycountries.Add("S", "Sweden") 

mycountries.Add("F", "France") 

mycountries.Add("I", "Italy") 

rb.DataSource=mycountries 

rb.DataValueField="Key" 

rb.DataTextField="Value" rb.DataBind() 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

34

 

 

 
 

end if end sub 

sub displayMessage(s as Object,e As EventArgs) lbl1.text="Your favorite 

country is: " & rb.SelectedItem.Text end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" 

onSelectedIndexChanged="displayMessage" /> 

<p><asp:label id="lbl1" runat="server" /></p> 
 

</form> 
 

</body> 
 

</html> 
 
 
 
You  cannot  choose  the  sort  order  of  the  items  added  to  the  Hashtable.  To  sort  items alphabetically 

or numerically, use the SortedList object. 

 
 
The SortedList Object 

 

The SortedList object contains items in key/value pairs. A SortedList object automatically sort the items 

in alphabetic or numeric order. Items are added to the SortedList with the Add() method. A SortedList 

can be sized to its final size with the TrimToSize() method. The following code creates a SortedList named 

mycountries and four elements are added: 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New SortedList 

mycountries.Add("N","Norway") 

mycountries.Add("S","Sweden") 

mycountries.Add("F","France") 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

35

 

 

 
 

mycountries.Add("I","Italy") 
 

end if end sub 

</script> 
 

A SortedList object may automatically generate the text and values to the following controls: 
 

    asp:RadioButtonList 
 

    asp:CheckBoxList 
 

    asp:DropDownList 
 

    asp:Listbox 
 

To bind data to a RadioButtonList control, first create a RadioButtonList control (without any 

asp:ListItem elements) in an .aspx page: 

 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" /> 
 

</form> 
 

</body> 
 

</html> 
 

Then add the script that builds the list: 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New SortedList 

mycountries.Add("N","Norway") 

mycountries.Add("S","Sweden") 

mycountries.Add("F","France") 

mycountries.Add("I","Italy") 

rb.DataSource=mycountries 

rb.DataValueField="Key" 

rb.DataTextField="Value" 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

36

 

 

 
 

rb.DataBind() 
 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" /> 
 

</form> 
 

</body> 
 

</html> 
 

Then we add a sub routine to be executed when the user clicks on an item in the RadioButtonList control. 

When a radio button is clicked, a text will appear in a label: 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New SortedList 

mycountries.Add("N","Norway") 

mycountries.Add("S","Sweden") 

mycountries.Add("F","France") 

mycountries.Add("I","Italy") 

rb.DataSource=mycountries 

rb.DataValueField="Key" 

rb.DataTextField="Value" rb.DataBind() 

end if end sub 

sub displayMessage(s as Object,e As EventArgs) lbl1.text="Your favorite 

country is: " & rb.SelectedItem.Text end sub 

</script> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

37

 

 

 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" 
 

AutoPostBack="True" onSelectedIndexChanged="displayMessage" /> 
 

<p><asp:label id="lbl1" runat="server" /></p> 
 

</form> 
 

</body> 
 

</html> 
 
 
 

ASP .NET - XML Files 
 

Here is an XML file named "countries.xml": 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
 

<countries> 
 

<country> 
 

<text>Norway</text> 
 

<value>N</value> 
 

</country> 
 

<country> 
 

<text>Sweden</text> 
 

<value>S</value> 
 

</country> 
 

<country> 
 

<text>France</text> 
 

<value>F</value> 
 

</country> 
 

<country> 
 

<text>Italy</text> 
 

<value>I</value> 
 

</country> 
 

</countries> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

38

 

 

 
 

Bind a DataSet to a List Control 
 

First, import the "System.Data" namespace. We need this namespace to work with DataSet objects. 

Include the following directive at the top of an .aspx page: 

<%@ Import Namespace="System.Data" %> 
 

Next, create a DataSet for the XML file and load the XML file into the DataSet when the page is first loaded: 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New DataSet 

mycountries.ReadXml(MapPath("countries.xml")) end if 

end sub 
 

To bind the DataSet to a RadioButtonList control, first create a RadioButtonList control (without any 

asp:ListItem elements) in an .aspx page: 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" AutoPostBack="True" /> 
 

</form> 
 

</body> 
 

</html> 
 

Then add the script that builds the XML DataSet: 
 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New DataSet 

mycountries.ReadXml(MapPath("countries.xml")) 

rb.DataSource=mycountries rb.DataValueField="value" 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

39

 

 

 
 

rb.DataTextField="text" 

rb.DataBind() 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" 
 

AutoPostBack="True" onSelectedIndexChanged="displayMessage" /> 
 

</form> 
 

</body> 
 

</html> 
 

Then  we  add  a  sub  routine  to  be  executed     when  the  user  clicks  on  an  item  in  the 
 

RadioButtonList control. When a radio button is clicked, a text will appear in a label: 
 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycountries=New DataSet 

mycountries.ReadXml(MapPath("countries.xml")) 

rb.DataSource=mycountries rb.DataValueField="value" 

rb.DataTextField="text" 

rb.DataBind() 
 

end if end sub 

sub displayMessage(s as Object,e As EventArgs) lbl1.text="Your favorite 

country is: " & rb.SelectedItem.Text end sub 

</script> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

40

 

 

 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:RadioButtonList id="rb" runat="server" 
 

AutoPostBack="True" onSelectedIndexChanged="displayMessage" /> 
 

<p><asp:label id="lbl1" runat="server" /></p> 
 

</form> 
 

</body> 
 

</html> 
 
 
 

The Repeater Control 
 

The Repeater control is used to display a repeated list of items that are bound to the control. The Repeater 

control may be bound to a database table, an XML file, or another list of items. Here we will show how to 

bind an XML file to a Repeater control. 

We will use the following XML file in our examples ("cdcatalog.xml"): 
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
 

<catalog> 
 

<cd> 
 

<title>Empire Burlesque</title> 
 

<artist>Bob Dylan</artist> 
 

<country>USA</country> 
 

<company>Columbia</company> 
 

<price>10.90</price> 
 

<year>1985</year> 
 

</cd> 
 

<cd> 
 

<title>Hide your heart</title> 
 

<artist>Bonnie Tyler</artist> 
 

<country>UK</country> 
 

<company>CBS Records</company> 
 

<price>9.90</price> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

41

 

 

 
 

<year>1988</year> 
 

</cd> 
 

<cd> 
 

<title>Greatest Hits</title> 
 

<artist>Dolly Parton</artist> 
 

<country>USA</country> 
 

<company>RCA</company> 
 

<price>9.90</price> 
 

<year>1982</year> 
 

</cd> 
 

<cd> 
 

<title>Still got the blues</title> 
 

<artist>Gary Moore</artist> 
 

<country>UK</country> 
 

<company>Virgin records</company> 
 

<price>10.20</price> 
 

<year>1990</year> 
 

</cd> 
 

<cd> 
 

<title>Eros</title> 
 

<artist>Eros Ramazzotti</artist> 
 

<country>EU</country> 
 

<company>BMG</company> 
 

<price>9.90</price> 
 

<year>1997</year> 
 

</cd> 
 

</catalog> 
 

Next, create a DataSet for the XML file and load the XML file into the DataSet when the page is first loaded: 

<script runat="server"> 
 

sub Page_Load 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

42

 

 

 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) end if 

end sub 
 

Then we create a Repeater control in an .aspx page. The contents of the <HeaderTemplate> 
 

element  are  rendered  first  and  only  once  within  the  output,  then  the  contents  of  the 
 

<ItemTemplate> element are repeated for each "record" in the DataSet, and last, the contents of the 

<FooterTemplate> element are rendered once within the output: 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:Repeater id="cdcatalog" runat="server"> 
 

<HeaderTemplate> 
 

... 
 

</HeaderTemplate> 
 

<ItemTemplate> 
 

... 
 

</ItemTemplate> 
 

<FooterTemplate> 
 

... 
 

</FooterTemplate> 
 

</asp:Repeater> 
 

</form> 
 

</body> 
 

</html> 
 

Then we add the script  that  creates the DataSet  and  binds the mycdcatalog DataSet to the Repeater 

control. We also fill the Repeater control with HTML tags and bind the data items to the cells in 

the<ItemTemplate> section with the <%#Container.DataItem("fieldname")%> method: 

Example 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

43

 

 

 
 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) 

cdcatalog.DataSource=mycdcatalog cdcatalog.DataBind() 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:Repeater id="cdcatalog" runat="server"> 
 

<HeaderTemplate> 
 

<table border="1" width="100%"> 
 

<tr> 
 

<th>Title</th> 
 

<th>Artist</th> 
 

<th>Country</th> 
 

<th>Company</th> 
 

<th>Price</th> 
 

<th>Year</th> 
 

</tr> 
 

</HeaderTemplate> 
 

<ItemTemplate> 
 

<tr> 
 

<td><%#Container.DataItem("title")%></td> 
 

<td><%#Container.DataItem("artist")%></td> 
 

<td><%#Container.DataItem("country")%></td> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

44

 

 

 
 

<td><%#Container.DataItem("company")%></td> 
 

<td><%#Container.DataItem("price")%></td> 
 

<td><%#Container.DataItem("year")%></td> 
 

</tr> 
 

</ItemTemplate> 
 

<FooterTemplate> 
 

</table> 
 

</FooterTemplate> 
 

</asp:Repeater> 
 

</form> 
 

</body> 
 

</html> 
 

Output 
 

 
 
 
 

Using the <AlternatingItemTemplate> 
 

You can add an <AlternatingItemTemplate> element after the <ItemTemplate> element to describe the 

appearance of alternating rows of output. In the following example each other row in the table will be 

displayed in a light grey color: 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) 

cdcatalog.DataSource=mycdcatalog cdcatalog.DataBind() 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

45

 

 

 
 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:Repeater id="cdcatalog" runat="server"> 
 

<HeaderTemplate> 
 

<table border="1" width="100%"> 
 

<tr> 
 

<th>Title</th> 
 

<th>Artist</th> 
 

<th>Country</th> 
 

<th>Company</th> 
 

<th>Price</th> 
 

<th>Year</th> 
 

</tr> 
 

</HeaderTemplate> 
 

<ItemTemplate> 
 

<tr> 
 

<td><%#Container.DataItem("title")%></td> 
 

<td><%#Container.DataItem("artist")%></td> 
 

<td><%#Container.DataItem("country")%></td> 
 

<td><%#Container.DataItem("company")%></td> 
 

<td><%#Container.DataItem("price")%></td> 
 

<td><%#Container.DataItem("year")%></td> 
 

</tr> 
 

</ItemTemplate> 
 

<AlternatingItemTemplate> 
 

<tr bgcolor="#e8e8e8"> 
 

<td><%#Container.DataItem("title")%></td> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

46

 

 

 
 

<td><%#Container.DataItem("artist")%></td> 
 

<td><%#Container.DataItem("country")%></td> 
 

<td><%#Container.DataItem("company")%></td> 
 

<td><%#Container.DataItem("price")%></td> 
 

<td><%#Container.DataItem("year")%></td> 
 

</tr> 
 

</AlternatingItemTemplate> 
 

<FooterTemplate> 
 

</table> 
 

</FooterTemplate> 
 

</asp:Repeater> 
 

</form> 
 

</body> 
 

</html> 
 

Output 
 

 
 
 
 

Using the <SeparatorTemplate> 
 

The <SeparatorTemplate> element can be used to describe a separator between each record. The following 

example inserts a horizontal line between each table row: 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) 

cdcatalog.DataSource=mycdcatalog 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

47

 

 

 
 

cdcatalog.DataBind() 
 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:Repeater id="cdcatalog" runat="server"> 
 

<HeaderTemplate> 
 

<table border="0" width="100%"> 
 

<tr> 
 

<th>Title</th> 
 

<th>Artist</th> 
 

<th>Country</th> 
 

<th>Company</th> 
 

<th>Price</th> 
 

<th>Year</th> 
 

</tr> 
 

</HeaderTemplate> 
 

<ItemTemplate> 
 

<tr> 
 

<td><%#Container.DataItem("title")%></td> 
 

<td><%#Container.DataItem("artist")%></td> 
 

<td><%#Container.DataItem("country")%></td> 
 

<td><%#Container.DataItem("company")%></td> 
 

<td><%#Container.DataItem("price")%></td> 
 

<td><%#Container.DataItem("year")%></td> 
 

</tr> 
 

</ItemTemplate> 
 

<SeparatorTemplate> 
 

<tr> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

48

 

 

 
 

<td colspan="6"><hr /></td> 
 

</tr> 
 

</SeparatorTemplate> 
 

<FooterTemplate> 
 

</table> 
 

</FooterTemplate> 
 

</asp:Repeater> 
 

</form> 
 

</body> </html> 
 

Output 
 

 
 
 
 

ASP.NET - The DataList Control 
 

The DataList control is, like the Repeater control, used to display a repeated list of items that are bound to 

the control. However, the DataList control adds a table around the data items by default. Bind a 

DataSet to a DataList Control The DataList control is, like the Repeater control, used to display a repeated 

list of items that are bound to the control. However, the DataList control adds a table around the data 

items by default. The DataList control may be bound to a database table, an XML file, or another list of 

items. Here we will show how to bind an XML file to a DataList control. 

 
 
Next, create a DataSet for the XML file and load the XML file into the DataSet when the page is first loaded: 

<script runat="server"> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

49

 

 

 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) end if 

end sub 
 

Then we create a DataList in an .aspx page. The contents of the <HeaderTemplate> element are rendered 

first and only once within the output, then the contents of the <ItemTemplate> element are repeated for each 

"record" in the DataSet, and last, the contents of the <FooterTemplate> element are rendered once within the 

output: 

Then we add the script  that  creates the DataSet  and binds the mycdcatalog DataSet to the DataList 

control. We also fill the DataList control with a <HeaderTemplate> that contains the header  of  the  table,  

an  <ItemTemplate>  that  contains  the  data  items  to  display,  and  a 

<FooterTemplate> that contains a text. Note that the gridlines attribute of the DataList is set to 
 

"both" to display table borders: 
 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) 

cdcatalog.DataSource=mycdcatalog cdcatalog.DataBind() 

end if end sub 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:DataList id="cdcatalog" gridlines="both" runat="server"> 
 

<HeaderTemplate> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

50

 

 

 
 

My CD Catalog 
 

</HeaderTemplate> 
 

<ItemTemplate> 

"<%#Container.DataItem("title")%>" of 

<%#Container.DataItem("artist")%> - 
 

$<%#Container.DataItem("price")%> 
 

</ItemTemplate> 
 

<FooterTemplate> Copyright Hege 

Refsnes 

</FooterTemplate> 
 

</asp:DataList> 
 

</form> 
 

</body> 
 

</html> 
 

 
 

You can also add styles to the DataList control to make the output more fancy: Example 

<%@ Import Namespace="System.Data" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

if Not Page.IsPostBack then 
 

dim mycdcatalog=New DataSet 

mycdcatalog.ReadXml(MapPath("cdcatalog.xml")) 

cdcatalog.DataSource=mycdcatalog cdcatalog.DataBind() 

end if 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

51

 

 

 
 
end sub 

 

</script> 
 

<html> 
 

<body> 
 

<form runat="server"> 
 

<asp:DataList        id="cdcatalog"        runat="server"        cellpadding="2"        cellspacing="2" 

borderstyle="inset" backcolor="#e8e8e8" width="100%" headerstyle-font-name="Verdana" headerstyle-font-

size="12pt" headerstyle-horizontalalign="center" headerstyle-font-bold="true" itemstyle-

backcolor="#778899" itemstyle-forecolor="#ffffff" footerstyle-font-size="9pt" footerstyle-font-italic="true"> 

<HeaderTemplate> My CD 

Catalog 

</HeaderTemplate> 
 

<ItemTemplate> 

"<%#Container.DataItem("title")%>" of 

<%#Container.DataItem("artist")%> - 
 

$<%#Container.DataItem("price")%> 
 

</ItemTemplate> 
 

<FooterTemplate> Copyright Hege 

Refsnes 

</FooterTemplate> 
 

</asp:DataList> 
 

</form> 
 

</body> 
 

</html> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

42

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

43

 

 

 
 

Using SQL Server with ASP.NET 
 

Microsoft SQL Server is based on the client/server architecture, in which data is stored on a centralized 

computer called a server. Other computers, called clients, can access the data stored on the server through a 

network. The client/server architecture prevents data inconsistency. You can access data stored on a SQL 

server through Web Forms. To do so, you can create Web applications that have data access controls. These 

data access Web controls present the data in a consistent manner irrespective of the actual source, such as 

Microsoft SQL Server or MS Access. Therefore, while creating a Web application, you do not need to worry 

about the format of the data. However, before you can access or  manipulate data from a SQL server,  

you need to perform the following steps in the specified sequence: 

1.   Establish a connection with the SQL Server. 
 

2.   Write the actual command to access or manipulate data. 
 

3.   Create a result set of the data from the data source with which the application can work. 
 

This result set is called the data set and is disconnected from the actual source. The application 

accesses and updates data in the data set, which is later reconciled with the actual data source. 

 
 
Selecting Data from Table 

 

To  achieve  this  functionality,  you  first  need  to  import  two  namespaces,  System.Data  and 
 

System.Data.SqlClient, into your Web Forms page. The syntax is given as follows: 
 

<%@ Import Namespace="System.Data.OleDb" %> 
 

We need this namespace to work with Microsoft Access and other OLE DB database providers. We will 

create the connection to the database in the Page_Load subroutine. We create a dbconn variable as a new 

OleDbConnection class with a connection string which identifies the OLE DB provider and the location of 

the database. Then we open the database connection: 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load dim dbconn 

dbconn=New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;//;;;;data source=" 
 

& server.mappath("northwind.mdb")) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

44

 

 

 
 

dbconn.Open() 
 

end sub 
 

</script> 
 

The connection string must be a continuous string without a line break. To specify the records to retrieve 

from the database, we will create a dbcomm variable as a new OleDbCommand class. The 

OleDbCommand class is for issuing SQL queries against database tables: 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

dim dbconn,sql,dbcomm 
 

dbconn=New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; 
 

data source=" & server.mappath("northwind.mdb")) 
 

dbconn.Open() 
 

sql="SELECT * FROM customers" dbcomm=New 

OleDbCommand(sql,dbconn) end sub 

</script> 
 

The  OleDbDataReader  class  is  used  to  read  a  stream  of  records  from  a  data  source.  A DataReader is 

created by calling the ExecuteReader method of the OleDbCommand object: 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

dim dbconn,sql,dbcomm,dbread 
 

dbconn=New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; 
 

data source=" & server.mappath("Bank.mdb")) 
 

dbconn.Open() 
 

sql="SELECT * FROM customers" dbcomm=New 

OleDbCommand(sql,dbconn) 

dbread=dbcomm.ExecuteReader() 

end sub 
 

</script> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

45

 

 

 
 

Then we bind the DataReader to a Repeater control: 
 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

dim dbconn,sql,dbcomm,dbread 
 

dbconn     =     New     OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data source=" & 

Server.MapPath("Bank.mdb")) 

dbconn.Open() 
 

sql = "SELECT * From customer where Address='Mnr'" 

dbcomm=New OleDbCommand(sql,dbconn) 

dbread=dbcomm.ExecuteReader() customers.DataSource=dbread 

customers.DataBind() 

dbread.Close() dbconn.Close() 

end sub 
 

</script> 
 

<html> 
 

<body> 
 

<form id="Form1" runat="server"> 
 

<asp:Repeater id="customers" runat="server"> 
 
 
 

<HeaderTemplate> 
 

<table border="1" width="100%"> 
 

<tr> 
 

<th>Customer ID</th> 
 

<th>Customer Name</th> 
 

<th>Address</th> 
 

<th>Age</th> 
 

<th>Mobile</th> 
 

<th>Email</th> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

46

 

 

 
 

</tr> 
 

</HeaderTemplate> 
 

<ItemTemplate> 
 

<tr> 
 

<td><%#Container.DataItem("Cid")%></td> 
 

<td><%#Container.DataItem("CName")%></td> 
 

<td><%#Container.DataItem("Address")%></td> 
 

<td><%#Container.DataItem("Age")%></td> 
 

<td><%#Container.DataItem("Mobile")%></td> 
 

<td><%#Container.DataItem("Email")%></td> 
 

</tr> 
 

</ItemTemplate> 
 

<FooterTemplate> 
 

</table> 
 

</FooterTemplate> 
 

</asp:Repeater> 
 

</form> 
 

</body> 
 

</html> 
 
 
 
Creating Table 

 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

Dim dbconn, sql, dbcomm 
 

dbconn = New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data source=" & 

Server.MapPath("Bank.mdb")) 

dbconn.Open() 
 

sql = "Create Table Products (ProductID VarChar (4) Primary Key, ProductName 
 

VarChar (20), UnitPrice Money,QtyAvailable Integer)" dbcomm = 

New OleDbCommand(sql, dbconn) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

47

 

 

 
 

dbcomm.ExecuteNonQuery() 
 

dbconn.Close() 
 

end sub 
 

</script> 
 
 
 

Inserting Data into Table 
 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

Dim dbconn, sql, dbcomm dbconn = 

New 

OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;datasource=" & 

Server.MapPath("Bank.mdb")) 

dbconn.Open() 
 

sql = "Insert into customer values(3,'Aaryan','Pkr',34,'9803456789','ar@gmail.com')" dbcomm = 

New OleDbCommand(sql, dbconn) 

dbcomm.ExecuteNonQuery() 
 

dbconn.Close() 
 

end sub 
 

</script> 
 
 
 

Deleting Data from Table 
 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

Dim dbconn, sql, dbcomm 
 

dbconn     =     New     OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data source=" & 

Server.MapPath("Bank.mdb")) 

dbconn.Open() 
 

sql = "Delete from customer where Cid=1" dbcomm = New 

OleDbCommand(sql, dbconn) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

48

 

 

 
 

dbcomm.ExecuteNonQuery() 
 

dbconn.Close() 
 

end sub 
 

</script> 
 
 
 

Updating Data in the Table 
 

<%@ Import Namespace="System.Data.OleDb" %> 
 

<script runat="server"> 
 

sub Page_Load 
 

Dim dbconn, sql, dbcomm 
 

dbconn     =     New     OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data source=" & 

Server.MapPath("Bank.mdb")) 

dbconn.Open() 
 

sql = "update customer set Address='Ktm' where Cid=2" dbcomm = 

New OleDbCommand(sql, dbconn) dbcomm.ExecuteNonQuery() 

dbconn.Close() 
 

end sub 
 

</script> 
 
 
 

A Sample GUI Based Form with Database Connectivity 
 

<%@ Page Language="VB"%> 
 

<%@ Import Namespace="System.Data.OleDb"%> 
 

<html> 
 

<script language="VB" runat=server> 
 

Sub Insert_Click(Src As Object, E As EventArgs) 
 

' Connect to Database 
 

Dim cnAccess As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;data source=" & 

Server.MapPath("Bank.mdb")) 

cnAccess.Open() 
 

dim sID, sFName, sLName, sAge, sInsertSQL as string 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

49

 

 

 
 

sID = eID.Text 
 

sFName = FName.Text sLName = 

LName.Text sAge = Age.Text 

'Make the insert statement 
 

sInsertSQL = "insert into employees values(" & sID & ",'" & sFName & "','" & 
 

sLName & "'," & sAge & ")" 
 

'Make the OleDbCommand object 
 

dim cmdInsert as New OleDbCommand(sInsertSQL,cnAccess) 
 

' This not a query so we do not expect any return data so use 
 

' the ExecuteNonQuery method 

cmdInsert.ExecuteNonQuery() response.write 

("Data recorded!") End Sub 

</script> 
 

<body> 
 

<form id="Form1" runat=server> 
 

<h3><font face="Verdana">Enter Employee Details</font></h3> 
 

<table> 
 

<tr> 
 

<td>ID:</td> 
 

<td><asp:textbox id="eID" runat="server"/></td> 
 

</tr> 
 

<tr> 
 

<td>First Name:</td> 
 

<td><asp:textbox id="FName" runat="server"/></td> 
 

</tr> 
 

<tr> 
 

<td>Last Name:</td> 
 

<td><asp:textbox id="LName" runat="server"/></td> 
 

</tr> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

50

 

 

 
 

<tr> 
 

<td>Age:</td> 
 

<td><asp:textbox id="Age" runat="server"/></td> 
 

</tr> 
 

</table> 
 

<asp:button ID="Button1" text="Insert" OnClick="Insert_Click" runat=server/> 
 

<p> 
 

<asp:Label id="Msg" ForeColor="red" Font-Name="Verdana" Font-Size= "10" 

runat=server /> 

</form> 
 

</body> 
 

</html> 
 
 
 
Handling Session and Cookie in ASP.net 

 

A session is defined as the period of time that a unique user interacts with a Web application. Active Server 

Pages (ASP) developers who wish to retain data for unique user sessions can use an intrinsic feature known 

as session state.  Programmatically, session state is nothing more than memory in the shape of a dictionary or 

hash table, e.g. key-value pairs, which can be set and read for the duration of a user's session. For example, a 

user selects stocks to track and the Web application can store these values in the user's ASP session instance: 

Session("Stocks") = "MSFT; VRSN; GE" 
 

On subsequent pages these values are read and the Web application has access to these values without the 

user re-entering them: 

Dim StockString 
 

StockString = Session("Stocks") 
 

ASP maintains session state by providing the client with a unique key assigned to the user when the session 

begins. This key is stored in an HTTP cookie that the client sends to the server on each request. The server 

can then read the key from the cookie and re-inflate the server session state. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

51

 

 

 
 
Problems with ASP Session State 

 

ASP developers know session state as a great feature, but one that is somewhat limited. These limitations 

include: 

 Process dependent. ASP session state exists in the process that hosts ASP; thus the actions that 

affect the process also affect session state. When the process is recycled or fails, session state is lost. 

 Server farm limitations. As users move from server to server in a Web server farm, their session 

state does not follow them. ASP session state is machine specific. Each ASP server provides its own 

session state, and unless the user returns to the same server, the session state is inaccessible. While 

network IP level routing solutions can solve such problems, by ensuring that client IPs are routed to 

the originating server, some ISPs choose to use a proxy load-balancing solution for their clients. Most 

infamous of these is AOL. Solutions such as AOL's prevent  network  level routing of requests to  

servers because the IP addresses for the requestor cannot be guaranteed to be unique. 

 Cookie dependent.  Clients that  don't  accept  HTTP  cookies can't  take advantage of session 

state. Some clients believe that cookies compromise security and/or privacy and thus disable them, 

which disables session state on the server. 

These  are  several  of the  problem  sets  that  were  taken  into  consideration  in  the  design  of 
 

ASP.NET session state. 
 

ASP.NET Session State 
 

ASP.NET session state solves all of the above problems associated with classic ASP session state: 

 Process independent. ASP.NET session state is able to run in a separate process from the 

ASP.NET host process. If session state is in a separate process, the ASP.NET process can come and 

go while the session state process remains available. Of course, you can still use session state in 

process similar to classic ASP, too. 

 Support  for  server  farm  configurations.  By  moving  to  an  out-of-process  model, ASP.NET 

also solves the server farm problem. The new out-of-process model allows all servers in the farm to 

share a session state process. You can implement this by changing the ASP.NET configuration to 

point to a common server. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

52

 

 

 
 

 Cookie independent. Although solutions to the problem of cookieless state management do exist for 

classic ASP, they're not trivial to implement. ASP.NET, on the other hand, reduces the complexities 

of cookieless session state to a simple configuration setting. 

 
 
Using ASP.NET Session State 

 

Before we use session state, we need an application to test it with. Below is the code for a simple 
 

Visual Basic application that writes to and reads from session state, SessionState.aspx: 
 

<Script runat=server> 
 

Sub Session_Add(sender As Object, e As EventArgs) 

Session("MySession") = text1.Value 

span1.InnerHtml = "Session data updated! <P> Your session contains: <font color=red>" 

+ Session("MySession").ToString() + "</font>" 

End Sub 
 

Sub CheckSession(sender As Object, e As EventArgs) If 

(Session("MySession") = "") Then 

span1.InnerHtml = "NOTHING, SESSION DATA LOST!" Else 

span1.InnerHtml = "Your session contains: <font color=red>" + 

Session("MySession").ToString() + "</font>" 

End If 
 

End Sub 
 

</Script> 
 

<form id="Form1" runat=server> 
 

<input id=text1 type=text runat=server> 
 

<input id="Submit1" type=submit runat=server OnServerClick="Session_Add" 

Value="Add to Session State"> 

<input id="Submit2" type=submit runat=server OnServerClick="CheckSession" 

Value="View Session State"> 

</form> 
 

<hr size=1> 
 

<font size=6><span id=span1 runat=server/></font> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

53

 

 

 
 
This simple page wires up two server-side events for the Add and View buttons, and simply sets the session 

state to the value in the text box. There are four general configuration settings we can look at in more detail: 

in-process mode, out-of-process mode, SQL Server mode, and Cookieless. 

 
 
Handling Cookies 

 

A cookie is a small bit of text that accompanies requests and pages as they go between the Web server and 

browser. The cookie contains information the Web application can read whenever the user visits the site. For 

example, if a user requests a page from your site and your application sends not just a page, but also a 

cookie containing the date and time, when the user's browser gets the page, the browser also gets the cookie, 

which it stores in a folder on the user's hard disk. Later, if user requests a page from your site again, when 

the user enters the URL the browser looks on the local hard disk for a cookie associated with the URL. 

If the cookie exists, the browser sends the cookie to your site along with the page request. Your 

application can then determine the date and time that the user last visited the site. You might use the 

information to display a message to the user or check an expiration date. 

Cookies are associated with a Web site, not with a specific page, so the browser and server will exchange 

cookie information no matter what page the user requests from your site. As the user visits different sites, 

each site might send a cookie to the user's browser as well; the browser stores all the cookies separately. 

Cookies help Web sites store information about visitors. More generally, cookies are one way of 

maintaining continuity in a Web application—that  is, of performing state management. Except for the 

brief time when they are actually exchanging information, the browser and Web server are disconnected. 

Each request a user makes to a Web server is treated independently of any other request. Many times, 

however, it's useful for the Web server to recognize users when they request a page. For example, the Web 

server on a shopping site keeps track of individual shoppers so the site can manage shopping carts and other 

user-specific information. A cookie therefore acts as a kind of calling card, presenting pertinent identification 

that helps an application know how to proceed. 

Cookies are used for many purposes, all relating to helping the Web site remember users. For example, a site 

conducting a poll might use a cookie simply as a Boolean value to indicate whether a user's browser has 

already participated in voting so that the user cannot vote twice. A 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

54

 

 

 
 
site that asks a user to log on might use a cookie to record that the user already logged on so that the user 

does not have to keep entering credentials. 

 
 
Page Directives 

 

Page directives are used to set various attributes about a page. The ASP Engine and the compiler follow  

these  directives  to  prepare  a  page.  There  are  many  kinds  of  directives.  The  most frequently ones are 

the following: @ Page,@ Import,@ Implements, @ Register,@ OutputCache and @ Assembly directives. 

These directives can be placed anywhere in a page, however, these are typically placed at the top. 

1.   @ Page:  We may use this directive to  declare  many page-related attributes about  a particular 

page. For example, we use this directive to declare the language to be used in a page, such as <%@ 

Page Language=”VB” Debug=”true” %> page. 

2.   @ Import: We use this directive to  import  a namespace  in the page  class file. For example, in 

the following directive, we are importing the System.Data.OleDb namespace in our page: <%@ 

Import Namespace=”System.Data.OleDb” %>. 

3.   @ OutputCache: We can use this directive to specify how to cache the page. In the following 

example, we are setting the duration  that a page or user control is output cached:<%@ 

OutputCache Duration=”10” /%>. 

4.   @ Register: This directive is used to register a custom control in a page. In the following example, 

we are registering one of our user custom controls in page: <%@ Register tagprefix =”utoledo” 

tagname=”Time” Src=”TimeUserControl.ascx”%>. 

5.   @ Assembly We use this directive to link to an assembly to the current page or user control. The 

following example shows how to link to an assembly-named payroll: <%@ Assembly 

Name=”Payroll” %>. 

6.   @ Implements This directive enables us to implement an interface in our page. In the following 

example, we are implementing the IpostBackEventHandler interface in one of our user controls: 

<%@ ImplementsInterface=”System.Web.UI.IPostBackEventHandler” %>. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

Web Technology Chapter‐ Server Side Scripting with ASP.NET

55

 

 

 
 
Tag Libraries 

 
 
In a Web application, a common design goal is to separate the display code from business logic. Java tag 
libraries are one solution to this problem. Tag libraries allow you to isolate business logic from the 
display code by creating a Tag class (which performs the business logic) and including an HTML-like tag in 
your JSP page. When the Web server encounters the tag within your JSP page, the Web server will call 
methods within the corresponding Java Tag class to produce the required HTML content. 

 
Microsoft® ASP.NET uses Web form controls to serve the same purpose as Java  tag libraries. 
Similar to JSP tags, Web form controls are added to an ASP.NET Web page using an HTML-like 
syntax. Unlike JSP tags however, a Web form control is actually an object that is contained within 
your ASP.NET page. This allows you to access information from your Web form control both before and 
after the page is loaded. The Microsoft® .NET Framework contains many ready-to-use Web form 
controls, including a Calendar Web form control and a Crystal Reports Viewer Web control. If you 
require different functionality than is provided by these Web form controls, you can either extend the existing 
Web form controls or create your own Web form controls by implementing various interfaces. 

 
Tag libraries were designed so that Java code could be executed within a JSP page without using Java script 
blocks, which clutter up the HTML and break the design goal of separating display code from business 
logic. Instead of script blocks, tag libraries allow you to create custom HTML-like tags that map to a 
Java class that performs the business logic. Groups of these HTML-like tags are called tag libraries. 
Creating and using a custom tag library involves three things: 

 
 One or more classes that implement the javax.servlet.jsp.tagext.Tag interface. The Tag interface 

defines six methods that allow your JSP page to use the class to create the desired HTML 
output. There are also classes/interfaces that implement/extend the Tag interface,  such  as  
TagSupport  and  BodyTagSupport,  to  make  it  easier  for  you  to develop your custom tag. 

     An XML document that describes your tag library. Tag library description files must 
conform to the JSP tag library description DTD, and generally have an extension of "tld". 

     Importing the tag library to the JSP page using the taglib directive. 
 
Once the three requirements are met, you can use the tags in your tag library anywhere within your JSP page. 

 
For detail explore:  http://msdn.microsoft.com/en-us/library/aa478990.aspx 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 

Unit 5: Introduction to Advanced Server Side 
Issues 

 
Database 
connection 

 
A database connection is a facility in  computer science that allows client software to communicate 
with database server software, whether on the same machine or not. A connection is required to send 
commands and receive answers.Connections are a  key concept in  data-centric programming. Since some 
DBMS engines require considerable time to connect connection pooling was invented to improve 
performance. No command can be performed against a database without an "open and available" connection 
to it. 

 
Connections are built by supplying an underlying driver or provider with a connection string, which is a way 
of addressing a specific database or server and instance as well as user authentication credentials (for 
example, Server=sql_box;Database=Common;User ID=uid;Pwd=password;). Once a connection has been 
built it can be opened and closed at will, and properties (such as the command time-out length, or transaction, 
if one exists) can be set. The Connection String is composed of a set of key/value pairs as dictated by 
the data access interface and data provider being used. 

 
Databases, such as PostgreSQL, only allow one operation to be performed at a time on each connection. If a 
request for data (a SQL Select statement) is sent to the database and a result set is returned, the connection is 
open but not available for other operations until the client finishes consuming the result set. Other 
databases, like SQL Server 2005 (and later), do not impose this limitation. However, databases that provide 
multiple operations per connection usually incur far more overhead than those that permit only a single 
operation task at a time. 

 
Connection 
Pooling 

 
Database connections are finite and expensive and can take a disproportionately long time to create relative 
to the operations performed on them. It is very inefficient for an application to create and close a database 
connection whenever it needs to update a database.Connection pooling is a technique designed to alleviate 
this problem. A pool of database connections can be created and then shared among the applications that need 
to access the database. When an application needs database access, it requests a connection from the pool. 
When it is finished, it returns the connection to the pool, where it becomes available for use by other 
applications. 

 
The connection object obtained from the connection pool is often a  wrapper around the actual 
database connection. The wrapper understands its relationship with the pool, and hides the details of the pool 
from the application. For example, the wrapper object can implement a "close" method that can be called just 
like the "close" method on the database connection. Unlike the method on the database connection, the 
method on the wrapper may not actually close the database connection, but instead return it to the pool. The 
application need not be aware of the connection pooling when it calls the methods on the wrapper object. 
This approach encourages the practice of opening a connection in an application only when needed, and 
closing it as soon as the work is done, rather than holding a connection open for the entire life of the 
application. In this manner, a relatively small number of connections can service a large number of requests. 
This is also called multiplexing.In a client/server architecture, on the other hand, a persistent connection is 
typically used so that server state can be managed. This "state" includes server-side cursors, temporary 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 

products, connection-specific functional settings, and so on. 
It is desirable to set some limit on the number of connections in the pool. Using too many connections may 
just cause thrashing rather than get more useful work done. In case an operation is attempted and all 
connections are in use, the operation can block until a connection is returned to the pool, or an error may be 
returned. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
2

 

 

ActiveX Data Objects 
ADO itself is a COM (Microsoft Component Object Model) component. ADO is designed to give a single 
method for accessing data to everybody. 
There are three main objects on which the ADO object model is built: 
• Connection Object 
• Command Object 
• Recordset Object 
Microsoft's ActiveX Data Objects (ADO) is a set of Component Object Model (COM) objects for accessing 
data sources. A part of MDAC, it provides a middleware layer between programming languages and OLE 
DB 
(a means of accessing data stores, whether they be databases or otherwise, in a uniform manner). ADO allows 
a developer to write programs that access data without knowing how the database is implemented. You must 
be aware of your database for connection only. No knowledge of SQL is required to access a database when 
using ADO, although one can use ADO to execute SQL commands. The disadvantage of this (i.e. using SQL 
directly) is that it introduces a dependency upon the type of database used. 
It is positioned as a successor to Microsoft's earlier object layers for accessing data sources, including RDO 
(Remote Data Objects) and DAO (Data Access Objects). ADO was introduced by Microsoft in October 
1996. 

 

 
 
Some basic steps are required in order to be able to access and manipulate data using ADO : 

1.  Create a connection object to connect to the database. 
2.  Create a recordset object in order to receive data in. 
3.  Open the connection 
4.  Populate the recordset by opening it and passing the desired table name or SQL statement as a 

parameter to open function. 
5.  Do all the desired searching/processing on the fetched data. 
6.  Commit the changes you made to the data (if any) by using Update or UpdateBatch methods. 
7.  Close the recordset 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
3

 

 

8.  Close the connection 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
3

 

 

OLE DB (Object Linking and Embedding, 
Database) 

 
OLE-DB allows programs to access information in any type of data store(databases, spreadsheets, 
graphs, emails and so on), where ODBC allows only access to a database. It’s a collection of the COM 
interfac e encapsulating various  database  management system  services.  A  service  is  a  component that  
extends  the functionality  of   data   providers,  by   providing  interfaces   not   natively  supported  by   
the   data   store. 

 
OLE DB (Object Linking and Embedding, Database) is an API designed by Microsoft for accessing data from 
a variety of sources in a uniform manner. It is a set of interfaces implemented using the Component Object 
Model (COM); it is otherwise unrelated to OLE. It was designed as a higher-level replacement for, and 
successor to, ODBC, extending its feature set to support a wider variety of non-relational databases, such as 
object databases and spreadsheets that do not necessarily implement SQL. 

 
OLE DB separates the data store from the application that needs access to it through a set of abstractions that 
include the datasource, session, command, and rowsets. This was done because different applications 
need access to different types and sources of data, and do not necessarily want to know how to access 
functionality with technology-specific methods. OLE DB is conceptually divided into consumers and 
providers. The consumers are the applications that need access to the data, and the providers are the software 
components that implement the interface and thereby provides the data to the consumer. OLE DB is part of 
the Microsoft Data Access Components (MDAC) stack. MDAC is a group of Microsoft technologies that 
interact together as a framework  that  allows  programmers  a  uniform  and  comprehensive  way  of  
developing  applications  for accessing almost any data store. 

 
ODBC (Open Database 
Connectivity) 

 
ODBC –Where everybody can get the information they want without having to worry about the method of 
data storage. CGI(Common Gateway Interface) w/ ODBC was used before ADO. The web server itself 
would use ODBC to communicate with the database. CGI isn’t used as much anymore due to it being slower 
and having to use languages like Perl and C++. 

 
Open  Database  Connectivity  (ODBC)  provides  a  standard  software  interface  for  accessing  database 
management systems  (DBMS). The  designers  of  ODBC  aimed  to  make  it  independent of  
programming languages, database systems, and operating systems. Thus, any application can use ODBC to 
query data from a database, regardless of the platform it is on or DBMS it uses. This is accomplished by using 
an ODBC driver as a translation layer between the application and the DBMS. The application thus only 
needs to know ODBC syntax, and the driver can then pass the query to the DBMS in its native format, 
returning the data in a format the application can understand. 

 
ADO.NET (ActiveX Data Object for .NET) is a set of computer software components that programmers can 
use to access data and data services. It is a part of the base class library that is included with the Microsoft 
.NET Framework. It is commonly used by programmers to access and modify data stored in relational 
database systems, though it can also access data in non-relational sources. ADO.NET is sometimes 
considered an evolution of ActiveX Data Objects (ADO) technology, but was changed so extensively that it 
can be considered an entirely new product. 

 
ADO.NET: Explicit and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
4

 

 

Factored 
 
The functionality that the ADO Recordset provides has been factored into the following explicit objects 
in 
ADO.NET: the DataReader, which provides fast, forward-only, read-only access to query results; the 
DataSet, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
4

 

 

which provides an in-memory relational representation of data; and the DataAdapter, which provides a 
bridge between the DataSet and the data source. The ADO.NET Command object also includes explicit 
functionality such as the ExecuteNonQuery method for commands that do not return rows, and the 
ExecuteScalar method for queries that return a single value rather than a row set.To better understand how 
the design of ADO.NET is made up of objects that are optimized to perform explicit behavior, consider 
the following tasks that are common when working with data. 

 
Forward-Only Read-Only Data 
Streams 
Applications, particularly middle-tier applications, often process a series of results programmatically, 
requiring no user interaction and no updating of or scrolling back through the results as they are read. In 
ADO, this type of data retrieval is performed using a Recordset with a forward-only cursor and a read-only 
lock. In ADO.NET, however, the DataReader object optimizes this type of data retrieval by providing a 
non-buffered, forward- only, read-only stream that provides the most efficient mechanism for retrieving 
results from the database. Much of this efficiency is gained as a result of the DataReader having been 
designed solely for this purpose, without having to support scenarios where data is updated at the data source 
or cached locally as with the ADO Recordset. 

 
Returning a Single 
Value 
Often the only data to be retrieved from a database is a single value (for example, an account balance). In 
ADO, you perform this type of data retrieval by creating a Recordset object, reading through the results, 
retrieving the single value, and then closing the Recordset. In ADO.NET, however, the Command object 
supports this function through the ExecuteScalar method, which returns the single value from the database 
without having to introduce an additional object to hold the results. 

 
Disconnected Access to 
Data 

 
A frequent case for exposing data is a representation in which a user can navigate the data in an ad-hoc 
manner without holding locks or tying up resources on the server. Some examples of this scenario are binding 
data to a control or combining data from multiple data sources and/or XML. The ADO Recordset provides 
some support for these scenarios, using a client-side cursor location. However, in ADO.NET the DataSet is 
explicitly designed for such tasks. 

 
The DataSet provides a common, completely disconnected data representation that can hold results from a 
variety of different sources. Because the DataSet is completely independent of the data source, it provides 
the same performance and semantics regardless of whether the data is loaded from a database, loaded from 
XML, or is generated by the application. A single DataSet may contain tables populated from several 
different databases and other non-database sources; to the consumer of the DataSet it all looks and behaves 
exactly the same. Within the DataSet you can define relations to navigate from a table populated from one 
database (for example, "Customers"), to a related table populated from an entirely different database (for 
example, "Orders"), and from there  to  a  third table  (for  example, "OrderDetails") containing values 
loaded from  XML. The relational capabilities of the DataSet provide an advantage over the Recordset, 
which is limited to exposing the results from multiple tables either as a single joined result, or by returning 
multiple distinct result sets, requiring the developer to handle and relate the results manually. Though the 
Recordset has the ability to return and navigate hierarchical results (using the MSDataShape provider), the 
DataSet provides much greater flexibility when dealing with related result sets. The DataSet also provides 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
5

 

 

the ability to transmit results to and from a remote client or server in an open XML format, with the schema 
defined using the XML Schema definition language (XSD). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
5

 

 

Retrieving and Updating Data from a Data 
Source 

 

 
Based on customer feedback and common use cases it is clear that in most application development 
scenarios (with the exception of ad-hoc tools and generic data components) the developer knows certain 
things about the data at design time that technologies like ADO attempt to derive at run time. For example, in 
most middle-tier applications the developer knows, at the time of application development, the type of 
database to be accessed, what queries will be executed, and how the results will be returned. ADO.NET 
gives you the ability to apply this knowledge at design time in order to provide better run-time performance 
and predictability. 

 
As an example, when using batch updating with ADO Recordset objects, you must submit changes to the 
database by executing appropriate INSERT, UPDATE, and DELETE statements for each row that has 
changed. ADO generates these statements implicitly, at run time, based on metadata that is often expensive to 
obtain. ADO.NET, however, enables you to explicitly specify INSERT, UPDATE, and DELETE commands, 
as well as custom business logic such as a stored procedure, that will be used to resolve changes in a DataSet 
back to the data source using the DataAdapter. This model provides you with greater control over how 
application data is returned and updated, and removes the expense of gathering the metadata at run time. 

 
The DataAdapter provides the bridge between the DataSet and the data source. A DataAdapter is used to 
populate a DataSet with results from a database, and to read changes out of a DataSet and resolve 
those changes back to the database. Using a separate object, the DataAdapter, to communicate with the 
database allows the DataSet to remain completely generic with respect to the data it contains, and gives 
you more control over when and how commands are executed and changes are sent to the database. ADO 
performs much of this behavior implicitly; however the explicit design of ADO.NET enables you to fine-tune 
your interaction with a data source for best performance and scalability. 
The implicit update behavior of ADO is also available in ADO.NET using a CommandBuilder object 
that, based on a single table SELECT, automatically generates the INSERT, UPDATE, and DELETE 
commands used for queries by the DataAdapter. However, the compromise for this convenience is slower 
performance and less control over how changes are propagated to the data source because, as with ADO, the 
commands are generated from metadata collected at run time. 

 
Data 
Types 

 
In ADO, all results are returned in a standard OLE Automation Variant type. This can hinder performance 
because, in addition to conversion overhead, variants are allocated using task-allocated system memory, 
which causes contention across the system. When retrieving results from a DataReader in ADO.NET, 
however, you can retrieve columns in their native data type, as a common Object class, without going 
through expensive conversions. Data values can either be exposed as .NET Framework types, or can be 
placed in a proprietary structure in the .NET Framework to preserve the fidelity of the native type. An 
example of this is the SQL Server .NET Data Provider, which can be used to expose Microsoft® SQL 
Server™ data as .NET Framework types, or as proprietary types defined by the classes in the 
System.Data.SqlTypes namespace 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
6

 

 

 
 

Comparison of ADO and 
ADO.NET 

 
The following is a comparison of two different database access technologies from Microsoft, namely, 
ActiveX Data Objects (ADO) and ADO.NET. Before comparing the two technologies, it is essential to get 
an overview of Microsoft Data Access Components (MDAC) and the .NET Framework. Microsoft Data 
Access Components provide a uniform and comprehensive way of developing applications for accessing 
almost any data store entirely from unmanaged code. The .NET Framework is an application virtual 
machine-based software environment that provides security mechanisms, memory management, and 
exception handling and is designed so that developers need not consider the capabilities of the specific CPU 
that will execute the .NET application. The .NET application virtual machine turns intermediate language (IL) 
into machine code. High-level language compilers for C#, VB.NET and C++ are provided to turn source 
code into IL. ADO.NET is shipped with the Microsoft NET Framework. 

 
ADO relies on COM whereas ADO.NET relies on managed-providers defined by the .NET CLR. 
ADO.NET does not replace ADO for the COM programmer; rather, it provides the .NET programmer with 
access to relational data sources, XML, and application data. 

 
 
 
 

ADO                                                             ADO.NET 
 

Business Model    Connection-oriented Models used mostly            
Disconnected models are 
used:Message- 

like Models. 

Disconnected 
Access                   

Provided by Record set                                         Provided by Data Adapter and Data set 

XML Support       Limited                                                                  Robust Support 

Client application needs to be connected always 
 

Connection 
Model 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
7

 

 

 

to data-server while working on the data, unless using client-side cursors or a disconnected Record set 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
8

 

 

Client disconnected as soon as the data is 
processed. DataSet is disconnected at all times. 

Data Passing         ADO objects communicate in binary mode.        ADO.NET uses XML for passing the data. 
 
Control of data access behaviors 

 
 
Design-time support 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
9

 

 

Includes implicit behaviors that may not always be required in an application and that may therefore limit 
performance. 
 
Derives information about data implicitly at run time, based on metadata that is often expensive to obtain. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 

Provides well-defined, factored components with predictable behavior, performance, 
and semantics. 

Leverages known metadata at design time in order to provide better run-time performance and more 
consistent run-time behavior. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
7

 

 

 
 

JDBC (Java Database 
Connectivity) 

 
Java DataBase Connectivity, commonly referred to as JDBC, is an API for the Java programming language 
that defines how a client may access a database. It provides methods for querying and updating data in a 
database. JDBC is oriented towards relational databases. A JDBC-to-ODBC bridge enables connections to 
any ODBC- accessible data source in the JVM host environment.The method Class.forName(String) is used to 
load the JDBC driver class. The line below causes the JDBC driver from some jdbc vendor to be loaded into 
the application. (Some JVMs also require the class to be instantiated with .newInstance().) 

 
Class.forName( "com.somejdbcvendor.TheirJdbcDriver" 
); 

 
In JDBC 4.0, it's no longer necessary to explicitly load JDBC drivers using Class.forName(). See JDBC 
4.0 
Enhancements in Java SE 6.When a Driver class is loaded, it creates an instance of itself and registers it with 
the DriverManager. This can be done by including the needed code in the driver class's static block. e.g. 
DriverManager.registerDriver(Driver driver) 

 
Now when a connection is needed, one of the DriverManager.getConnection() methods is used to create a 
JDBC 
connectio
n. 

 
Connection conn = DriverManager.getConnection( 

"jdbc:somejdbcvendor:other data needed by some jdbc 
vendor", "myLogin", 
"myPassword" ); 

tr
y 
{ 

/* you use the connection here */ 
} 
finally 
{ 

//It's important to close the connection when you are done with it 
try { conn.close(); } catch (Throwable ignore) { /* Propagate the original 

exception instead of this one that you may want just logged */ } 
} 

 
The URL used is dependent upon the particular JDBC driver. It will always begin with the "jdbc:" protocol, 
but the rest is up to the particular vendor. Once a connection is established, a statement must be created. 

 
Statement stmt = 
conn.createStatement(); 
tr
y 
{ 

stmt.executeUpdate( "INSERT INTO MyTable( name ) VALUES ( 'my name' ) " ); 
} 
finally 
{ 

//It's important to close the statement when you are done with it 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
8

 

 

try { stmt.close(); } catch (Throwable ignore) { /* Propagate the original 
exception instead of this one that you may want just logged */ } 
} 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
8

 

 

5.2  Creating an SQL Statement : Select , Insert, Update, and Delete 
using System;
using System.Data;
using System.Data.OracleClient;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;
public class UserInfo

{             public UserInfo()

{

//

// TODO: Add constructor logic here

//

public string AddUser(string user_id, string User_Name, string Password, string User_level, string user_department)

{

string sql = "insert into user_setup values ('" + user_id + "','" + User_Name + "','" + Password + "','" + User_level + "','" +

user_department + "')";

try

{

string ConStr;

ConStr = ConfigurationManager.AppSettings["Constring"];

OracleConnection conn = new OracleConnection();

conn.ConnectionString = ConStr;

conn.Open();

OracleCommand cmd = conn.CreateCommand();

cmd.CommandText = sql;

cmd.ExecuteNonQuery();

conn.Close();

return "information add in user_setup in your Database";

}

catch (System.Exception err)

{

return err.ToString();

}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
9

 

 

}

public string checkuser(string user_name, string password)

{

string sql = "select * from user_setup  where User_Id = '" + user_name + "'and User_Password = '" + password + "' ";

//try

//{

//string ConStr;

////Constr = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=D:\\project\\EMSFINAL\\Database\\EmployeeAdministration.mdb";

//ConStr = ConfigurationManager.AppSettings["Constring"];

//OleDbConnection conn = new OleDbConnection();

//conn.ConnectionString = ConStr;

//conn.Open();

//OleDbCommand cmd = conn.CreateCommand();

//cmd.CommandText = sql;

string ConStr;
ConStr =
ConfigurationManager.AppSettings["Constring"];
OracleConnection conn = new OracleConnection();
conn.ConnectionString = ConStr;
conn.Open();
OracleCommand cmd =
conn.CreateCommand(); cmd.CommandText =
sql; cmd.ExecuteNonQuery();
OracleDataReader  dr = cmd.ExecuteReader();
if(dr.HasRows)

{

dr.Read();

tr
y

{

if (dr.GetValue(3).ToString().Trim() == "ADMIN")

return "Admin";

else if (dr.GetValue(3).ToString().Trim() == "USER")

return "No Admin";

else

return "simple";

}

catch



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
1

 

 

{

return "No Admin";



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

}

10

 

 

return "user valid";

}

else

return "INVALID USERNAME OR PASSWORD";

//}

//  catch (System .Exception err)

//    {

//   return err.ToString ();

// }

conn.Close();

}

public string UpdateUser(string User_id, string User_name, string User_Password, string User_Level, string

User_Department)

{

string sql;

sql = "update user_setup set User_Id='" + User_id + "', User_Name='" + User_name + "',User_Password ='" +

User_Password + "',User_Level='" + User_Level + "',User_Department='" + User_Department + "' where

user_setup.User_Id = '" + User_id + "' ";

try

{

string ConStr;

ConStr = ConfigurationManager.AppSettings["Constring"];
OracleConnection conn = new OracleConnection();
conn.ConnectionString = ConStr;
conn.Open();
OracleCommand cmd = conn.CreateCommand();
cmd.CommandText = sql; cmd.ExecuteNonQuery();
conn.Close();
return "user updated";

}
catch (System.Exception err)

{
return err.ToString ();

}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 

}

11

 

 

public string deletUser(string user_Id)
{
string sql;
// sql = "delete from  user_setup  where User_Id = '" + user_Id + "'and User_Name='" + user_name + "'";
sql = "delete from  user_setup where  User_Id = '" + user_Id + "'";
try
{
string ConStr;
ConStr = ConfigurationManager.AppSettings["Constring"];
OracleConnection conn = new OracleConnection();
conn.ConnectionString = ConStr;
conn.Open();
OracleCommand cmd = conn.CreateCommand();
cmd.CommandText = sql; cmd.ExecuteNonQuery();
conn.Close();
return "user deleted";

}
catch (System.Exception err)
{
return err.ToString();

}

}
public string addlog(string user_id, string time_stamp)
{
string sql = "insert into hr_log values ('" + user_id + "','" + time_stamp + "')";
try
{            string ConStr;
ConStr = ConfigurationManager.AppSettings["Constring"];
OracleConnection conn = new OracleConnection();
conn.ConnectionString = ConStr;
conn.Open();
OracleCommand cmd = conn.CreateCommand();
cmd.CommandText = sql; cmd.ExecuteNonQuery();
conn.Close();
return null;

}

catch (System.Exception err)

{            return err.ToString();

}

}

}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
12

 

 

Connection String Setting in Web.Config file 
 
<?xml version="1.0"?> 

 
<!-- 

Note: As an alternative to hand editing this file you can use 
the web admin tool to configure settings for your application. 
Use 
the Website->Asp.Net Configuration option in Visual 
Studio. A full list of settings and comments can be found 
in machine.config.comments usually located in 
\Windows\Microsoft.Net\Framework\v2.x\Config 

--> 
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0"> 

<appSettings> 
<add key="Constring" value="Data Source=EMS;user id=hem; password=pass" /> 
<add key="CrystalImageCleaner-AutoStart" value="true" /> 
<add key="CrystalImageCleaner-Sleep" value="60000" /> 
<add key="CrystalImageCleaner-Age" value="120000" /> 

</appSettings> 
<connectionStrings> 

<add name="ConnectionString" connectionString="Data 
Source=EMS;Persist Security Info=True;User ID=ascol;Password=pass;Unicode=True" 
providerName="System.Data.OracleClient"/> 

<add name="ConnectionString2" connectionString="Data 
Source=EMS;Persist Security Info=True;User 
ID=ascol;Password=pass;Unicode=True" providerName="System.Data.OracleClient"/> 

<add name="ConnectionString3" connectionString="Data 
Source=EMS;Persist Security Info=True;User 
ID=ascol;Password=pass;Unicode=True" providerName="System.Data.OracleClient"/> 

<add name="emsConnStr" connectionString="Data Source=ems;Persist 
Security Info=True;User 
ID=hem;Password=pass;Unicode=True" 
providerName="System.Data.OracleClient"/> 

</connectionStrings> 
<system.web> 

<!-- 
Set compilation debug="true" to insert debugging 
symbols into the compiled page. Because this 
affects performance, set this value to true 
only during development. 

--> 
<httpHandlers> 

<add path="Reserved.ReportViewerWebControl.axd" verb="*" 
type="Microsoft.Reporting.WebForms.HttpHandler, 
Microsoft.ReportViewer.WebForms, Version=8.0.0.0, Culture=neutral, 
PublicKeyToken=b03f5f7f11d50a3a" validate="false"/> 

<add verb="GET" path="CrystalImageHandler.aspx" 
type="CrystalDecisions.Web.CrystalImageHandler, 
CrystalDecisions.Web, Version=10.2.3600.0, Culture=neutral, 
PublicKeyToken=692fbea5521e1304"/></httpHandlers> 

<compilation debug="true"> 
<assemblies> 

<add assembly="System.Data.OracleClient, 
Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> 

<add assembly="System.Windows.Forms, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
13

 

 

Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downloaded from: https://genuinenotes.com 
13

 

 

<add assembly="CrystalDecisions.CrystalReports.Engine, 
Version=10.2.3600.0, Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="CrystalDecisions.ReportSource, 
Version=10.2.3600.0, Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="CrystalDecisions.Shared, 
Version=10.2.3600.0, Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="CrystalDecisions.Web, Version=10.2.3600.0, 
Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="CrystalDecisions.ReportAppServer.ClientDoc, 
Version=10.2.3600.0, Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="CrystalDecisions.Enterprise.Framework, 
Version=10.2.3600.0, Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="CrystalDecisions.Enterprise.InfoStore, 
Version=10.2.3600.0, Culture=neutral, PublicKeyToken=692fbea5521e1304"/> 

<add assembly="System.Web.Extensions, Version=1.0.61025.0, 
Culture=neutral, PublicKeyToken=31BF3856AD364E35"/></assemblies> 

<buildProviders> 
<add extension=".rdlc" 

type="Microsoft.Reporting.RdlBuildProvider, Microsoft.ReportViewer.Common, 
Version=8.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/> 

</buildProviders> 
</compilation> 
<!-- 
The <authentication> section enables configuration 
of the security authentication mode used by 
ASP.NET to identify an incoming user. 

--> 
<authentication mode="Windows"/> 
<customErrors mode="Off"> 
</customErrors> 

</system.web> 
</configuration> 


