
Programming Fundamentals

Computer programming (often shortened to programming) is a
process that leads from an original formulation of a computing
problem to executable computer programs. Programming
involves activities such as analysis, developing understanding,
generating algorithms, verification of requirements of algorithms
including their correctness and resources consumption, and
implementation (commonly referred to as coding) of algorithms
in a target programming language

This course comprises nine lessons on the fundamentals of
computer programming. Each lesson includes a combination of
Wikibooks, Wikipedia, and Internet-based readings, YouTube
videos, and hands-on, interactive learning activities. Examples
are provided using flowcharts, pseudocode, and a wide variety
of computer programming languages.

This entire Wikiversity course can be downloaded in book form
by selecting Download Learning Guide in the sidebar. The
corresponding Wikipedia reading collection can be downloaded
in book form by selecting Download Reading Guide.

Preparation

This is a second-semester, college-level course. Learners
should already be familiar with introductory computer
concepts and have advanced or proficient-level computer skills.
Learners need to have access to the internet readily available
to them.

Programming Fundamentals/Introduction

https://en.wikiversity.org/wiki/IC3
https://en.wikiversity.org/wiki/IC3
https://en.wikiversity.org/wiki/Computer_Skills
https://en.wikiversity.org/wiki/File:Flowgorithm_Hello_World.svg

This lesson introduces computer programming, flowcharts,
pseudocode, and integrated development environments (IDEs).
These will help you to learn a chosen programming language
as well as help you learn to write your own programs. Each of
the programs are essential to helping you take the steps
needed to go further in your field.

Objectives and Skills

Objectives and skills for this lesson include:

 Understand fundamental computer programming concepts.

 Use a flowchart to describe a simple process.

 Use pseudocode to describe a simple process.

 Use an online IDE to edit and test simple programs.

 Understand available compilers/interpreters and IDEs for a
selected programming language.

Programming Fundamentals/Variables

This lesson introduces variables, constants, data types,
expressions, statements, and order of operations.

Objectives and Skills

 Understand variables and constants.

 Use integer, floating-point, and string data types
appropriately.

 Use expressions and statements to assign values to
variables.

 Understand the order of operations for arithmetic and logical
operators.

https://en.wikiversity.org/wiki/File:Flowgorithm_F_to_C.svg

Programming Fundamentals/Functions

This lesson introduces functions. A function is a block of
organized code that is used to perform a single task. They
provide better modularity for your application and reuse-ability.
Depending on the programming language, a function may be
called a subroutine, a procedure, a routine, a method, or a
subprogram. The generic term, callable unit, is sometimes
used. Using functions can allow you to be able to keep your
code clean and organized, making it easy to read, and allows
the debugging process to be easier.

[1]

Objectives and Skills

Objectives and skills for this lesson include:

 Understand the benefits of modular programming

 Understand functions, passed parameters, and return values

https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-1
https://en.wikiversity.org/wiki/File:Flowgorithm_F_to_C_Main.svg

 Understand variable scope

 Use functions to implement program functionality

 Use local variables, passed parameters, and return values

 Apply standard coding style to source code

Examples

 Flowchart

 Pseudocode

 Block

 BASIC

 C

 C++

 C#

 Clojure

 COBOL

 Fortran

 Go

 Java

 JavaScript

 Lua

 Perl

 PHP

 PowerShell

 Python3

 Ruby

 Swift

 VB.NET

Activities

Complete the following activities using a flowchart tool,
pseudocode, or your selected programming language. Use
separate functions for input, processing, and output. Avoid
global variables by passing parameters and returning results.

https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Flowchart
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Pseudocode
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Block
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/BASIC
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/C
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/C%2B%2B
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/C_Sharp
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Clojure
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/COBOL
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Fortran
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Go
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Java
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/JavaScript
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Lua
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Perl
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/PHP
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/PowerShell
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Python3
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Ruby
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/Swift
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions/VB.NET

1. Create a program to prompt the user for hours worked per
week and rate per hour and then calculate and display
their weekly, monthly, and annual gross pay (hours *
rate). Base monthly and annual calculations on 12 months
per year and 52 weeks per year.

[2]

2. Create a program that asks the user how old they are in
years, and then calculate and display their approximate
age in months, days, hours, and seconds. For example, a
person 1 year old is 12 months old, 365 days old, etc.

3. Review MathsIsFun: US Standard Lengths. Create a
program that asks the user for a distance in miles, and
then calculate and display the distance in yards, feet, and
inches, or ask the user for a distance in miles, and then
calculate and display the distance in kilometers, meters,
and centimeters.

4. Review MathsIsFun: Area of Plane Shapes. Create a
program that asks the user for the dimensions of different
shapes and then calculate and display the area of the
shapes. Do not include shape choices. That will come
later. For now, just include multiple shape calculations in
sequence.

5. Create a program that calculates the area of a room to
determine the amount of floor covering required. The
room is rectangular with the dimensions measured in feet
with decimal fractions. The output needs to be in square
yards. There are 3 linear feet (9 square feet) to a yard.

[3]

6. Create a program that helps the user determine how much
paint is required to paint a room and how much it will cost.
Ask the user for the length, width, and height of a room,
the price of a gallon of paint, and the number of square
feet that a gallon of paint will cover. Calculate the total

area of the four walls as 2 * length * height + 2

* width * height Calculate the number of gallons

as: total area / square feet per gallon Note:

You must round up to the next full gallon. To round up,
add 0.9999 and then convert the resulting value to an

https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-2
http://www.mathsisfun.com/measure/us-standard-length.html
http://www.mathsisfun.com/area.html
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-3

integer. Calculate the total cost of the paint as: gallons

* price per gallon .
[4]

7. Review Wikipedia: Aging in dogs. Create a program to
prompt the user for the name of their dog and its age in
human years. Calculate and display the age of their dog in
dog years, based on the popular myth that one human
year equals seven dog years. Be sure to include the dog's
name in the output, such as:

 Spike is 14 years old in dog years.

Lesson Summary

 Modular programming is a software design technique that
emphasizes separating the functionality of a program into
independent, interchangeable modules, such that each
contains everything necessary to execute only one aspect of
the desired functionality.

[5]

 The hierarchy chart shows the relationship between various
models. They are created by the programmer to help
document a program.

[6]

 Functions allow you to break down programs into smaller,
simpler, programs or "blocks" making it easier for the user to
test and work on. Functions also allow the user to keep their
programs organized and easy to read.

[source?]
 A function acts

as a miniature program, with its own input, processing, and
output.

[7]

 The scope is the area of the program where an item that has
an identifier name is recognized. It is an important concept
for modularization. A Scope can be two types of a Global
scope and a Local scope. Global scope occurs when a
variable is "defined outside of the function". The local scope,
from the other hand, is defined "inside of the function" and
exist only until the function completes its task.

[8]

 A good rule of thumb for identifiers in procedural programs is
to use verb-noun combinations for function identifiers and
use a noun or adjective-noun combinations for constant and
variable identifiers. If a function name requires two verbs or

https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-4
https://en.wikipedia.org/wiki/Aging_in_dogs
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-5
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-6
https://en.wikiversity.org/wiki/Wikiversity:Citation_needed
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-7
https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-8

two nouns to fully describe the function, it should probably
be split into separate functions.

[9]

 Programming style is a set of rules or guidelines of writing
the code for a computer program. Almost all languages have
their own set of guidelines that allow programmers to code
efficiently. Following a programming style of a particular
language will help programmers to read and understand
source code confirming to the style set and help to avoid
introducing errors. Code that is written well should have
appropriate spacing and proper indentations and be free
from grammar and spelling errors.

Key Terms

argument

In programming, a value that is passed between
programs, subroutines or functions; which are provided as
an input to a function. Arguments are independent items,
or variables, that contain data or codes. When an
argument is used to customize a program for a user, it is
typically called a "parameter."

call-by-reference

Arguments are passed to the subroutine by direct
reference, typically using the argument's address. Which
can be modified by called functions.

call-by-value

Arguments are evaluated and a copy of the value is
passed to the subroutine. Which cannot be modified by
called functions.

function

A section of a program designed to perform a specific
procedure or task.

function header

The header includes the name of the function and tells us
(and the compiler) what type of data it expects to receive
(the parameters) and the type of data it will return (return
value type) to the calling function or program.

identifier name

https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-9

The name given by the programmer to identify a function
or other program items such as variables

modularization

The ability to group code into a unit, most often being
functions, that can be used as independent and self-
contained sub-programs withing the main program.

parameter

In computer programming, a parameter is a value that is
passed into a function

return statement

Stops the function and returns a variable to the call
location.

[20]

return value

Return value is a variable or other information coming
back from the subroutine.

scope

Variables can only effect areas in which they are defined,
their reach by default is local to the function in which they
are defined.

subroutine

In computer programming, a subroutine is a sequence of
program instructions that performs a specific task,
packaged as a unit. This unit can then be used in
programs wherever that particular task should be
performed.

void

A data type that represents a return of no value.
[

https://en.wikiversity.org/wiki/Programming_Fundamentals/Functions#cite_note-20

