
CCA-101: Fundamentals of IT & Programming

Assignment – 2

Q1. What is the difference between Machine Language and High Level

Language?
The only language computer hardware can understand is binary code consisting of 1s and 0s. Learn
how compilers and interpreters are used to translate a computer program into binary code in this
video lesson.

Programming Languages
A program is a set of instructions that tells a computer what to do in order to come up with a solution
to a particular problem. Programs are written using a programming language. A programming
language is a formal language designed to communicate instructions to a computer. There are two
major types of programming languages: low-level languages and high-level languages.

Low-Level Languages
Low-level languages are referred to as 'low' because they are very close to how different hardware
elements of a computer actually communicate with each other. Low-level languages are machine
oriented and require extensive knowledge of computer hardware and its configuration. There are two
categories of low-level languages: machine language and assembly language.

Machine language, or machine code, is the only language that is directly understood by the
computer, and it does not need to be translated. All instructions use binary notation and are written
as a string of 1s and 0s. A program instruction in machine language may look something like this:

10010101100101001111101010011011100101

Technically speaking, this is the only language computer hardware understands. However, binary
notation is very difficult for humans to understand. This is where assembly languages come in.

An assembly language is the first step to improve programming structure and make machine
language more readable by humans. An assembly language consists of a set of symbols and
letters. A translator is required to translate the assembly language to machine language. This
translator program is called the 'assembler.' It can be called the second generation language since it
no longer uses 1s and 0s to write instructions, but terms like MOVE, ADD, SUB and END.

Many of the earliest computer programs were written in assembly languages. Most programmers
today don't use assembly languages very often, but they are still used for applications like operating
systems of electronic devices and technical applications, which use very precise timing or
optimization of computer resources. While easier than machine code, assembly languages are still
pretty difficult to understand. This is why high-level languages have been developed.

High-Level Languages
A high-level language is a programming language that uses English and mathematical symbols,
like +, -, % and many others, in its instructions. When using the term 'programming languages,' most

people are actually referring to high-level languages. High-level languages are the languages most
often used by programmers to write programs. Examples of high-level languages are C++, Fortran,
Java and Python.

To get a flavor of what a high-level language actually looks like, consider an ATM machine where
someone wants to make a withdrawal of $100. This amount needs to be compared to the account
balance to make sure there are enough funds. The instruction in a high-level computer language
would look something like this:

x = 100
if balance x:
 print 'Insufficient balance'
else:
 print 'Please take your money'

This is not exactly how real people communicate, but it is much easier to follow than a series of 1s
and 0s in binary code.

There are a number of advantages to high-level languages. The first advantage is that high-level
languages are much closer to the logic of a human language. A high-level language uses a set of
rules that dictate how words and symbols can be put together to form a program. Learning a high-
level language is not unlike learning another human language - you need to learn vocabulary and
grammar so you can make sentences. To learn a programming language, you need to learn
commands, syntax and logic, which correspond closely to vocabulary and grammar.

The second advantage is that the code of most high-level languages is portable and the same code
can run on different hardware. Both machine code and assembly languages are hardware specific
and not portable. This means that the machine code used to run a program on one specific
computer needs to be modified to run on another computer. Portable code in a high-level language
can run on multiple computer systems without modification. However, modifications to code in high-
level languages may be necessary because of the operating system. For example, programs written
for Windows typically don't run on a Mac.

A high-level language cannot be understood directly by a computer, and it needs to be translated
into machine code. There are two ways to do this, and they are related to how the program is
executed: a high-level language can be compiled or interpreted.

Compiler
A compiler is a computer program that translates a program written in a high-level language to the
machine language of a computer. The high-level program is referred to as 'the source code.' A
typical computer program processes some type of input data to produce output data. The compiler is
used to translate source code into machine code or compiled code. This does not yet use any of the
input data. When the compiled code is executed, referred to as 'running the program,' the program
processes the input data to produce the desired output.

When using a compiler, the entire source code needs to be compiled before the program can be
executed. The resulting machine code is typically a compiled file, such as a file with an .exe
extension. Once you have a compiled file, you can run the program over and over again without
having to compile it again. If you have multiple inputs that require processing, you run the compiled
code as many times as needed.

Q2. Discuss about different data types of C programming Language.

Variables in C are associated with data type. Each data type requires an amount of
memory and performs specific operations.

There are some common data types in C −

• int − Used to store an integer value.

• char − Used to store a single character.

• float − Used to store decimal numbers with single precision.

• double − Used to store decimal numbers with double precision.

The following table displays data types in C language −

Data Types Bytes Range

short int 2 -32,768 to 32,767

unsigned short int 2 0 to 65,535

unsigned int 4 0 to 4,294,967,295

int 4 -2,147,483,648 to 2,147,483,647

long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

signed char 1 -128 to 127

unsigned char 1 0 to 255

float 4 1.2E-38 to 3.4E+38

double 8 2.3E-308 to 1.7E+308

Here is the syntax of datatypes in C language,

data_type variable_name;

Here is an example of datatypes in C language,

Example

 Live Demo

#include >stdio.h>

int main() {

 // datatypes

 int a = 10;

 char b = 'S';

 float c = 2.88;

 double d = 28.888;

 printf("Integer datatype : %d\n",a);

 printf("Character datatype : %c\n",b);

 printf("Float datatype : %f\n",c);

 printf("Double Float datatype : %lf\n",d);

 return 0;

}

Here is the output,

Output
Integer datatype : 10

Character datatype : S

Float datatype : 2.880000

Double Float datatype : 28.888000

Q3. Find the output of the following expressions

a) X=20/5*2+30-5 b) Y=30 – (40/10+6) +10 c) Z= 40*2/10-2+10

a) X=20/5*2+30-5

http://tpcg.io/ax82MB

b) The order of algebraic operations we can follow is as below

c) B =Brackets should be operated first(inside the brackets we may also have more

than one operations ,so repeat them according to BODMAS rule)

d) O=of ,means bracket wise multiplication or division like 2(3)=6 and 4(1/4)=4

e) D =division symbol i.e. ÷ ,a totally indicative symbol of division,let us do an

example like,16÷2 =8

f) M=multiplication symbol such as x or × or * that means a product of two or more

numbers or terms.Example wise,2*3=6 or 2×3=6,or 2x3=6

g) A =addition symbol like + ,simply adding two or more numbers or terms like as

2+ 3=5.

h) S= subtraction symbol -,we can take an example as 4–4=0,which could also be

spelt as four minus four is zero.

i) This is the order what we should follow for a mathematical calculation.

j) Your question is 10+5×2, here we go with the above rules.

k) 10+5×2=10+10=20(here we have two operations multiplication and addition,we

do this according to priorities assigned by BODMAS rule i.e.first multiply and the

add.)

Q4. Describe the syntax of the following statements

a) If – else statement b) for loop c) while loop d) do-while loop

In the previous tutorial we learned while loop in C. A do while loop is similar to
while loop with one exception that it executes the statements inside the body of
do-while before checking the condition. On the other hand in the while loop, first
the condition is checked and then the statements in while loop are executed. So
you can say that if a condition is false at the first place then the do while would
run once, however the while loop would not run at all.

C – do..while loop

Syntax of do-while loop

do
{
 //Statements

https://beginnersbook.com/2014/01/c-while-loop/

}while(condition test);

Flow diagram of do while loop

Example of do while loop

#include <stdio.h>
int main()
{
 int j=0;
 do
 {
 printf("Value of variable j is: %d\n", j);
 j++;
 }while (j<=3);
 return 0;
}

Output:

Value of variable j is: 0
Value of variable j is: 1
Value of variable j is: 2
Value of variable j is: 3

While vs do..while loop in C

Using while loop:

#include <stdio.h>
int main()
{
 int i=0;
 while(i==1)

 {
 printf("while vs do-while");
 }
 printf("Out of loop");
}

Output:

Out of loop

Same example using do-while loop

#include <stdio.h>
int main()
{
 int i=0;
 do
 {
 printf("while vs do-while\n");
 }while(i==1);
 printf("Out of loop");
}

Output:

while vs do-while
Out of loop

Explanation: As I mentioned in the beginning of this guide that do-while runs at
least once even if the condition is false because the condition is evaluated, after
the execution of the body of loop.

Q5. Find the output of the following program segments

a) #include <stdio.h>

int main()

{

int i;

for (i=1; i<2; i++)

{

printf("IMS Ghaziabad\n");

}

}

b) #include <stdio.h>

int main()

{

int i = 1;

while (i <= 2)

{

printf("IMS Ghaziabad\n");

i = i + 1;

}

}

c)| #include <stdio.h>

void main()

{

int a = 10, b=100;

if(a > b)

printf("Largest number is %d\n”, a);

else

printf("Largest number is %d\n”, b);

}

