
 Introduction to C

C is a programming language developed at AT & T’s Bell Laboratories of USA in

1972. It was designed and written by a man named Dennis Ritchie. In the late

seventies C began to replace the more familiar languages of that time like PL/I,

ALGOL, etc

ANSI C standard emerged in the early 1980s, this book was split into two

titles: The original was still called Programming in C, and the title that covered

ANSI C was called Programming in ANSI C. This was done because it took several

years for the compiler vendors to release their ANSI C compilers and for them to

become ubiquitous. It was initially designed for programming UNIX operating

system. Now the software tool as well as the C compiler is written in C. Major parts

of popular operating systems like Windows, UNIX, Linux is still written in C. This

is because even today when it comes to performance (speed of execution) nothing

beats C. Moreover, if one is to extend the operating system to work with new

devices one needs to write device driver programs. These programs are

exclusively written in C. C seems so popular is because it is reliable, simple and

easy to use. often heard today is – “C has been already superceded by languages

like C++, C# and Java.

Program : There is a close analogy between learning English language and learning C
language. The classical method of learning English is to first learn the alphabets used in
the language, then learn to combine these alphabets to form words, which in turn are
combined to form sentences and sentences are combined to form paragraphs. Learning C
is similar and easier. Instead of straight-away learning how to write programs, we must
first know what alphabets, numbers and special symbols are used in C, then how using
them constants, variables and keywords are constructed, and finally how are these
combined to form an instruction. A group of instructions would be combined later on to
form a program There is a close analogy between learning English language and learning
C language.
The classical method of learning English is to first learn the alphabets used in the
language, then learn to combine these alphabets to form words, which in turn are
combined to form sentences and sentences are combined to form paragraphs. Learning C
is similar and easier. Instead of straight-away learning how to write programs, we must
first know what alphabets, numbers and special symbols are used in C, then how using
them constants, variables and keywords are constructed, and finally how are these
combined to form an instruction. A group of instructions would be combined later on to
form a program.

a computer program is just a collection of the instructions necessary to solve a

specific problem. The basic operations of a computer system form what is known
as the computer’s instruction set. And the approach or method that is used to
solve the problem is known as an algorithm.

So for as programming language concern these are of two types.

1) Low level language

2) High level language

Low level language:

 Low level languages are machine level and assembly level

language. In machine level language computer only understand digital numbers

i.e. in the form of 0 and 1. So, instruction given to the computer is in the form

binary digit, which is difficult to implement instruction in binary code. This type

of program is not portable, difficult to maintain and also error prone. The

assembly language is on other hand modified version of machine level

language. Where instructions are given in English like word as ADD, SUM, MOV

etc. It is easy to write and understand but not understand by the machine. So the

translator used here is assembler to translate into machine level. Although

language is bit easier, programmer has to know low level details related to low

level language. In the assembly level language the data are stored in the

computer register, which varies for different computer. Hence it is not portable.

High level language:

These languages are machine independent, means it is portable. The

language in this category is Pascal, Cobol, Fortran etc. High level languages are

understood by the machine. So it need to translate by the translator into

machine level. A translator is software which is used to translate high level

language as well as low level language in to machine level language.

Three types of translator are there: a) Compiler

 b) Interrupter

 c) Assembler

 Compiler and interpreter are used to convert the high level language into

machine level language. The program written in high level language is known as

source program and the corresponding machine level language program is called as

object program. Both compiler and interpreter perform the same task but there

working is different. Compiler read the program at-a-time and searches the error

and lists them. If the program is error free then it is converted into object program.

When program size is large then compiler is preferred. Whereas interpreter read

only one line of the source code and convert it to object code. If it check error,

statement by statement and hence of take more time.

Integrated Development Environments (IDE)

The process of editing, compiling, running, and debugging programs is often

managed by a single integrated application known as an Integrated Development

Environment, or IDE for short. An IDE is a windows-based program that allows us

to easily manage large software programs, edit files in windows, and compile, link,

run, and debug programs.

On Mac OS X, CodeWarrior and Xcode are two IDEs that are used by many

programmers. Under Windows, Microsoft Visual Studio is a good example of a

popular IDE. Kylix is a popular IDE for developing applications under Linux.

Most IDEs also support program development in several different programming

languages in addition to C, such as C# and C++.

Structure of C Language program

1) Comment line

2) Preprocessor directive

3) Global variable declaration

4) main function()

{

Local variables;

Statements;

}

User defined function

}

}

Comment line

It indicates the purpose of the program. It is represented as

/*……………………………..*/

Comment line is used for increasing the readability of the program. It is useful in

explaining the program and generally used for documentation. It is enclosed within

the decimeters. Comment line can be single or multiple line but should not be

nested. It can be anywhere in the program except inside string constant & character

constant.

Preprocessor Directive: #include<stdio.h> tells the compiler to include information

about the standard input/output library. It is also used in symbolic constant such as

#define PI 3.14(value). The stdio.h (standard input output header file) contains

definition &declaration of system defined function such as printf(), scanf(), pow()

etc. Generally printf() function used to display and scanf() function used to read value.

Global Declaration:

This is the section where variable are declared globally so that it can be access by all the

functions used in the program. And it is generally declared outside the function :

main()

It is the user defined function and every function has one main() function from where

actually program is started and it is encloses within the pair of curly braces.

The main() function can be anywhere in the program but in general practice it is placed

in the first position.

Syntax :

main()

{

……..

……..

……..

}

The main() function return value when it declared by data type as int

main()

{

return 0

}

The main function does not return any value when void (means null/empty) as

void main(void) or void main()

{

printf (“C language”);

}

The program execution start with opening braces and end with closing brace.

And in between the two braces declaration part as well as executable part is

mentioned. And at the end of each line, the semi-colon is given which indicates

statement termination.

statement termination.

/*First c program with return statement*/

#include <stdio.h>

int main (void)

{

printf ("welcome to c Programming language.\n"); return

0;

}

Output: welcome to c programming language.

Steps for Compiling and executing the Programs

A compiler is a software program that analyzes a program developed in a particular computer language

and then translates it into a form that is suitable for execution

 on a particular computer system. Figure below shows the steps that are involved in entering, compiling,

and executing a

computer program developed in the C programming language and the typical Unix commands that

would be entered from the command line.

Step 1: The program that is to be compiled is first typed into a file on the computer system.

There are various conventions that are used for naming files, typically be any name provided

the last two characters are “.c” or file with extension .c. So, the file name prog1.c might be a

valid filename for a C program. A text editor is usually used to enter the C program into a file.

For example, vi is a popular text editor used on Unix systems. The program that is entered into

the file is known as the source program because it represents the original form of the program

expressed in the C language.

Step 2: After the source program has been entered into a file, then proceed to have it compiled.

The compilation process is initiated by typing a special command on the system. When this

command is entered, the name of the file that contains the source program must also be

specified. For example, under Unix, the command to initiate program compilation is called cc. If

we are using the popular GNU C compiler, the command we use is gcc.

Typing the line

gcc prog1.c or cc prog1.c

In the first step of the compilation process, the compiler examines each program

on a particular computer system. Figure below shows the steps that are involved in entering,

compiling, and executing a

computer program developed in the C programming language and the typical Unix commands that

would be entered from the command line.

statement contained in the source program and checks it to ensure that it conforms to the

syntax and semantics of the language. If any mistakes are discovered by the compiler

during this phase, they are reported to the user and the compilation process ends right

there. The errors then have to be corrected in the source program (with the use of an

editor), and the compilation process must be restarted. Typical errors reported during this

phase of compilation might be due to an expression that has unbalanced parentheses

(syntactic error), or due to the use of a variable that is not “defined” (semantic error).

Step 3: When all the syntactic and semantic errors have been removed from the program,

the compiler then proceeds to take each statement of the program and translate it into a

“lower” form that is equivalent to assembly language program needed to perform the

identical task.

Step 4: After the program has been translated the next step in the compilation process is

to translate the assembly language statements into actual machine instructions. The

assembler takes each assembly language statement and converts it into a binary format

known as object code, which is then written into another file on the system. This file has

the same name as the source file under Unix, with the last letter an “o” (for object) instead

of a “c”.

Step 5: After the program has been translated into object code, it is ready to be

linked. This process is once again performed automatically whenever the cc or gcc

command is issued under Unix. The purpose of the linking phase is to get the

program into a final form for execution on the computer.

If the program uses other programs that were previously processed

by the compiler, then during this phase the programs are linked together. Programs

that are used from the system’s program library are also searched and linked

together with the object program during this phase.

The process of compiling and linking a program is often called building.

The final linked file, which is in an executable object code format, is stored in another

file on the system, ready to be run or executed. Under Unix, this file is called a.out by

default. Under Windows, the executable file usually has the same name as the source

file, with the c extension replaced by an exe extension.

Step 6: To subsequently execute the program, the command a.out has the effect of

loading the program called a.out into the computer’s memory and initiating its execution.

When the program is executed, each of the statements of the program is sequentially

executed in turn. If the program requests any data from the user, known as input, the

program temporarily suspends its execution so that the input can be entered. Or, the

program might simply wait for an event, such as a mouse being clicked, to occur. Results

that are displayed by the program, known as output, appear in a window, sometimes called

the console. If the program does not produce the desired results, it is necessary to go back

and reanalyze the program’s logic. This is known as the debugging phase, during which

an attempt is made to remove all the known problems or bugs from the program. To do

this, it will most

Step 6: To subsequently execute the program, the command a.out has the effect

of loading the program called a.out into the computer’s memory and initiating its

execution.

When the program is executed, each of the statements of the program is

sequentially executed in turn. If the program requests any data from the user,

known as input, the program temporarily suspends its execution so that the input

can be entered. Or, the program might simply wait for an event, such as a mouse

being clicked, to occur. Results that are displayed by the program, known as

output, appear in a window, sometimes called the console. If the program does not

produce the desired results, it is necessary to go back and reanalyze the program’s

logic. This is known as the debugging phase, during which an attempt is made to

remove all the known problems or bugs from the program. To do this, it will most

a simple c program to add two numbers :

example : 1

include<stdio.h>
int main()
int a, b, suum;
printf(“enter two no”);
scanf(“%d%d”,&a, &b);
sum=a+b
print(“sum=%d”, sum);
return (0)

example :2

#include <stdio.h>

int main (void)

{

int v1, v2, sum; //v1,v2,sum are variables and int is data type declared

v1 = 150;

v2 = 25;

sum = v1 + v2;

printf ("The sum of %i and %i is= %i\n", v1, v2, sum);

return 0;

}

Output:
The sum of 150 and 25 is=175

}

The main function does not return any value when void (means null/empty) as

void main(void) or void main()

{

printf (“C language”);

}

Output: C language

The program execution start with opening braces and end with closing brace.

And in between the two braces declaration part as well as executable part is

mentioned. And at the end of each line, the semi-colon is given which indicates

statement termination. likely be necessary to make changes to original source

program.

Character set

A character denotes any alphabet, digit or special symbol used to represent

information. Valid alphabets, numbers and special symbols allowed in C are

The alphabets, numbers and special symbols when properly combined form

constants, variables and keywords.

Identifiers

Identifiers are user defined word used to name of entities like variables, arrays,

functions, structures etc. Rules for naming identifiers are:

1) name should only consists of alphabets (both upper and lower case), digits

and underscore (_) sign.

2) first characters should be alphabet or underscore

3) name should not be a keyword

4) since C is a case sensitive, the upper case and lower case considered

differently, for example code, Code, CODE etc. are different identifiers.

5) identifiers are generally given in some meaningful name such as value,

net_salary, age, data etc. An identifier name may be long, some implementation

recognizes only first eight characters, most recognize 31 characters. ANSI

standard compiler recognize 31 characters. Some invalid identifiers are 5cb, int,

res#, avg no etc.

Keyword : There are certain words reserved for doing specific task, these words are

known as reserved word or keywords. These words are predefined and always written in

lower case or small letter. These keywords cann’t be used as a variable name as it

assigned with fixed meaning. Some examples are int, short, signed, unsigned, default,

volatile, float, long, double, break, continue, typedef, static, do, for, union, return, while,

do, extern, register, enum, case, goto, struct, char, auto, const etc.

There are certain words reserved for doing specific task, these words

are known as reserved word or keywords. These words are predefined and always

written in lower case or small letter. These keywords cann’t be used as a variable

name as it assigned with fixed meaning. Some examples are int, short, signed,

unsigned, default, volatile, float, long, double, break, continue, typedef, static, do,

for, union, return, while, do, extern, register, enum, case, goto, struct, char, auto,

const etc.

data types

Data types refer to an extensive system used for declaring variables or functions of

different types before its use. The type of a variable determines how much space it

occupies in storage and how the bit pattern stored is interpreted. The value of a

variable can be changed any time.

C has the following 4 types of data types

basic built-in data types: int, float, double, char

Enumeration data type: enum

Derived data type: pointer, array, structure, union

Void data type: void

A variable declared to be of type int can be used to contain integral values

only—that is, values that do not contain decimal places. A variable declared to be

of type float can be used for storing floating- point numbers (values containing

decimal places). The double type is the same as type float, only with roughly twice

the precision. The char data type can be used to store a single character, such as the

letter a, the digit character 6, or a semicolon similarly A variable declared char can

only store character type value.

There are two types of type qualifier in c

Size qualifier: short, long

Sign qualifier: signed, unsigned

data types

Data types refer to an extensive system used for declaring variables or functions of

different types before its use. The type of a variable determines how much space it

occupies in storage and how the bit pattern stored is interpreted. The value of a

variable can be changed any time.

C has the following 4 types of data types

basic built-in data types: int, float, double, char

Enumeration data type: enum

Derived data type: pointer, array, structure, union

Void data type: void

When the qualifier unsigned is used the number is always positive, and when

signed is used number may be positive or negative. If the sign qualifier is not

mentioned, then by default sign qualifier is assumed. The range of values for

signed data types is less than that of unsigned data type. Because in signed type,

the left most bit is used to represent sign, while in unsigned type this bit is also

used to represent the value. The size and range of the different data types on a 16

bit machine is given below:

Basic data type Data type with type

qualifier

Size

(byte)

Range

char char or signed char

Unsigned char

1
1

-128 to 127
0 to 255

int int or signed int 2 -32768 to 32767
 unsigned int 2 0 to 65535
 short int or signed short int 1 -128 to 127
 unsigned short int 1 0 to 255
 long int or signed long int 4 -2147483648 to 2147483647
 unsigned long int 4 0 to 4294967295

float float 4 -3.4E-38 to 3.4E+38

double double 8 1.7E-308 to 1.7E+308
 Long double 10 3.4E-4932 to 1.1E+4932

Constants

Constant is a any value that cannot be changed during program execution. In C,

any number, single character, or character string is known as a constant. A constant

is an entity that doesn’t change whereas a variable is an entity that may change.

For example, the number 50 represents a constant integer value. The character

string "Programming in C is fun.\n" is an example of a constant character string. C

constants can be divided into two major categories:

Primary Constants

Secondary Constants

These constants are further categorized as

Numeric constant
Character constant
String constant

Numeric constant: Numeric constant consists of digits. It required minimum size
of 2 bytes and max 4 bytes. It may be positive or negative but by default sign is
always positive. No comma or space is allowed within the numeric constant and it
must have at least 1 digit. The allowable range for integer constants is -32768 to
32767. Truly speaking the range of an Integer constant depends upon the compiler.
For a 16-bit compiler like Turbo C or Turbo C++ the range is –32768 to 32767.
For a 32-bit compiler the range would be even greater. Mean by a 16-bit or a 32- bit
compiler, what range of an Integer constant has to do with the type of compiler.

It is categorized a integer constant and real constant. An integer constants are
whole number which have no decimal point. Types of integer constants are:

Decimal constant: 0 ------- 9(base 10)
Octal constant: 0 ------- 7(base 8)
Hexa decimal constant: 0----9, A -------- F(base 16)

In decimal constant first digit should not be zero unlike octal constant first digit
must be zero(as 076, 0127) and in hexadecimal constant first two digit should be
0x/ 0X (such as 0x24, 0x87A). By default type of integer constant is integer but if
the value of integer constant is exceeds range then value represented by integer
type is taken to be unsigned integer or long integer. It can also be explicitly mention
integer and unsigned integer type by suffix l/L and u/U.

Real constant is also called floating point constant. To construct real constant we must follow
the rule of ,
-real constant must have at least one digit.
-It must have a decimal point.

-It could be either positive or negative.
-Default sign is positive.
-No commas or blanks are allowed within a real constant. Ex.: +325.34 426.0-32.76

To express small/large real constant exponent(scientific) form is used where number is written
in mantissa and exponent form separated by e/E. Exponent can be positive or negative integer
but mantissa can be real/integer type, for example 3.6*105=3.6e+5. By default type of floating
point constant is double, it can also be explicitly defined it by suffix of f/F.

Character constant :

 Character constant represented as a single character enclosed within a single quote. These

can be single digit, single special symbol or white spaces such as ‘9’,’c’,’$’, ‘ ’ etc. Every character

constant has a unique integer like value in machine’s character code as if machine using ASCII

(American standard code for information interchange). Some numeric value associated with

each upper and lower case alphabets and decimal integers are as:

A -------------- Z ASCII value (65-90)

a -------------- z ASCII value (97-122)

0-------------9 ASCII value (48-59)

; ASCII value (59)

String constant

Set of characters are called string and when sequence of characters are enclosed

within a double quote (it may be combination of all kind of symbols) is a string constant.

String constant has zero, one or more than one character and at the end of the string null

character(\0) is automatically placed by compiler. Some examples are “,sarathina” ,

“908”, “3”,” ”, “A” etc. In C although same characters are enclosed within single and

double quotes it represents different meaning such as “A” and ‘A’ are different because

first one is string attached with null character at the end but second one is character

constant with its corresponding ASCII value is 65.

Symbolic constant
Symbolic constant is a name that substitute for a sequence of characters and, characters

may be numeric, character or string constant. These constant are generally defined at

the beginning of the program as

#define name value , here name generally written in

upper case for example

#define MAX 10
#define CH ‘b’

#define NAME “sony”
Variables

Variable is a data name which is used to store some data value or symbolic names
for storing program
computations and results. The value of the variable can be change during the

execution. The rule for naming the variables is same as the naming identifier.

Before used in the program it must be declared. Declaration of variables specify its

name, data types and range of the value that variables can store depends upon its

data types.

Syntax:

int a;

char c;

float f;

Variable initialization

When we assign any initial value to variable during the declaration, is called

initialization of variables. When variable is declared but contain undefined value

then it is called garbage value. The variable is initialized with the assignment

operator such as operator such as

Data type variable name=constant;

Example: int a=20;

Or int a;

a=20;

statements

Expressions

An expression is a combination of variables, constants, operators and function call. It can

be arithmetic, logical and relational for example:-

int z= x+y // arithmatic

expression a>b //relational

a==b // logical
func(a, b) // function
call

Expressions consisting entirely of constant values are called constant expressions.
So, the expression
121 + 17 - 110
is a constant expression because each of the terms of the expression is a constant
value. But if i were declared to be an integer variable, the expression
180 + 2 – j
would not represent a constant expression.

statements

Expressions

An expression is a combination of variables, constants, operators and function call. It

can be arithmetic, logical and relational for example:-

int z= x+y // arithmatic

expression a>b //relational

a==b // logical
func(a, b) // function
call

Expressions consisting entirely of constant values are called constant expressions.
So, the expression
121 + 17 - 110
is a constant expression because each of the terms of the expression is a constant
value. But if i were declared to be an integer variable, the expression
180 + 2 – j
would not represent a constant expression.

Operator

This is a symbol use to perform some operation on variables, operands or with the

constant. Some operator required 2 operand to perform operation or Some required

single operation.

Several operators are there those are, arithmetic operator, assignment, increment , decrement,

logical, conditional, comma, size of , bitwise and others.

1.Arithmatic Operator

This operator used for numeric calculation. These are of either Unary arithmetic

operator, Binary arithmetic operator. Where Unary arithmetic operator required

only one operand such as +,-, ++, --,!, tiled. And these operators are addition,

subtraction, multiplication, division. Binary arithmetic operator on other hand

required two operand and its operators are +(addition), -(subtraction),

*(multiplication), /(division), %(modulus). But modulus cannot applied with

floating point operand as well as there are no exponent operator in c.

Unary (+) and Unary (-) is different from addition and subtraction.

When both the operand are integer then it is called integer arithmetic and the result is

always integer. When both the operand are floating point then it is called floating

arithmetic and when operand is of integer and floating point then it is called mix type or

mixed mode arithmetic . And the result is in float type.

2.Assignment Operator

A value can be stored in a variable with the use of assignment operator. The

assignment operator(=) is used in assignment statement and assignment expression.

Operand on the left hand side should be variable and the operand on the right hand

side should be variable or constant or any expression. When variable on the left

hand side is occur on the right hand side then we can avoid by writing the

compound statement. For example,

int x= y;

int Sum=x+y+z;

3.Increment and Decrement

The Unary operator ++, --, is used as increment and decrement which acts upon

single operand. Increment operator increases the value of variable by one

.Similarly decrement operator decrease the value of the variable by one. And these

operator can only used with the variable, but cann't use with expression and

constant as ++6 or ++(x+y+z).

It again categories into prefix post fix . In the prefix the value of the variable is

incremented 1st, then the new value is used, where as in postfix the operator is

written after the operand(such as m++,m--).

EXAMPLE

let y=12;

z= ++y;

y= y+1;

z= y;

Similarly in the postfix increment and decrement operator is used in the operation .

And then increment and decrement is perform.

EXAMPLE

let x= 5;

y= x++;

y=x;

x= x+1;

Relational Operator

It is use to compared value of two expressions depending on their relation.

Expression that contain relational operator is called relational expression.

Here the value is assign according to true or false value.

a.(a>=b) || (b>20)

b.(b>a) && (e>b)

c. 0(b!=7)

conditional operator :

 The conditional operator is also called as ternary operator. Since it required

three expressions as operand and it is represented as (? , :).

SYNTAX

exp1 ? exp2 :exp3

Here exp1 is first evaluated. It is true then value return will be exp2 . If false then

exp3.

EXAMPLE

void main()

{

int a=10, b=2

int s= (a>b) ? a:b;

printf(“value is:%d”);

}

Output:

Value is:10

1. Comma Operator

Comma operator is use to permit different expression to be appear in a situation

where only one expression would be used. All the expression are separator by

comma and are evaluated from left to right.

EXAMPLE

int i, j, k, l;

for(i=1,j=2;i<=5;j<=10;i++;j++)

Size of Operator

Size of operator is a Unary operator, which gives size of operand in terms of byte that

occupied in the memory. An operand may be variable, constant or data type qualifier.

Generally it is used make portable program(program that can be run on different

machine) . It determines the length of entities, arrays and structures when their size are

not known to the programmer. It is also use to allocate size of memory dynamically

during execution of the program.

EXAMPLE

main()

{

int sum;

float f;

printf("%d%d" ,size of(f), size of (sum));

printf("%d%d", size of(235 L), size of(A));

 }

 Bitwise Operator

Bitwise operator permit programmer to access and manipulate of data at bit level.

Various bitwise operator enlisted are

one's complement (~)

bitwise AND (&)

bitwise OR (|)

bitwise XOR (^)

left shift (<<)

right shift (>>)

These operator can operate on integer and character value but not on float and double. In

bitwise operator the function showbits() function is used to display the binary

representation of any integer or character value.

In one's complement all 0 changes to 1 and all 1 changes to 0. In the bitwise OR its value

would obtaining by 0 to 2 bits.

As the bitwise OR operator is used to set on a particular bit in a number. Bitwise AND

the logical AND.

It operate on 2operands and operands are compared on bit by bit basic. And hence both

the operands are of same type.

Logical or Boolean Operator

Operator used with one or more operand and return either value zero (for false) or one (for true). The

operand may be constant, variables or expressions. And the expression that combines two or more

expressions is termed as logical expression. C has three logical operators.

Operator Meaning

&& AND

|| OR

! NOT

Where logical NOT is a unary operator and other two are binary operator. Logical

AND gives result true if both the conditions are true, otherwise result is false. And

logial OR gives result false if both the condition false, otherwise result is true.

	Program : There is a close analogy between learning English language and learning C language. The classical method of learning English is to first learn the alphabets used in the language, then learn to combine these alphabets to form words, which in ...
	The classical method of learning English is to first learn the alphabets used in the language, then learn to combine these alphabets to form words, which in turn are combined to form sentences and sentences are combined to form paragraphs. Learning C ...
	Low level language:
	High level language:
	Integrated Development Environments (IDE)
	Structure of C Language program
	Comment line
	Global Declaration:
	main()
	/*First c program with return statement*/
	Steps for Compiling and executing the Programs
	Character set
	Identifiers
	data types
	Enumeration data type: enum
	data types (1)
	Enumeration data type: enum (1)
	Constants
	Numeric constant Character constant String constant
	String constant
	Symbolic constant
	Expressions
	Expressions (1)
	Operator
	1.Arithmatic Operator
	2.Assignment Operator
	3.Increment and Decrement
	Relational Operator
	1. Comma Operator
	Size of Operator
	Bitwise Operator
	Logical or Boolean Operator
	Operator Meaning

