
CCA-101: Fundamentals of IT & Programming

Assignment – 2

Q.1 What is the difference between Machine Language and High Level Language?

Ans. Machine language

Updated: 06/30/2019 by Computer Hope

Sometimes referred to as machine code or object code, machine language is a collection
of binary digits or bits that the computer reads and interprets. Machine language is the only
language a computer is capable of understanding.

The exact machine language for a program or action can

differ by operating system. The specific operating system

dictates how a compiler writes a program or action into

machine language.

Computer programs are written in one or more programming

languages, like C++, Java, or Visual Basic. A computer cannot

directly understand the programming languages used to

create computer programs, so the program code must

be compiled. Once a program's code is compiled, the

computer can understand it because the program's code is

turned into machine language.

Machine language example

Below is an example of machine language (binary) for the

text "Hello World."

01001000 01100101 01101100 01101100 01101111 00100000 01010111 01101111 01110010

01101100 01100100

Below is another example of machine language (non-binary),

which prints the letter "A" 1000 times to the computer

screen.

169 1 160 0 153 0 128 153 0 129 153 130 153 0 131 200 208 241 96

https://www.computerhope.com/jargon/b/binary.htm
https://www.computerhope.com/jargon/o/os.htm
https://www.computerhope.com/jargon/p/programming-language.htm
https://www.computerhope.com/jargon/p/programming-language.htm
https://www.computerhope.com/jargon/c/cplus.htm
https://www.computerhope.com/jargon/j/java.htm
https://www.computerhope.com/jargon/v/vb.htm
https://www.computerhope.com/jargon/c/compile.htm

High-level programming language
From Wikipedia, the free encyclopedia

Jump to navigationJump to search

In computer science, a high-level programming language is a programming language with
strong abstraction from the details of the computer. In contrast to low-level programming
languages, it may use natural language elements, be easier to use, or may automate (or even hide
entirely) significant areas of computing systems (e.g. memory management), making the process
of developing a program simpler and more understandable than when using a lower-level
language. The amount of abstraction provided defines how "high-level" a programming language
is.[1]

In the 1960s, high-level programming languages using a compiler were commonly
called autocodes.[2] Examples of autocodes are COBOL and Fortran.[3]

The first high-level programming language designed for computers was Plankalkül, created
by Konrad Zuse.[4] However, it was not implemented in his time, and his original contributions
were largely isolated from other developments due to World War II, aside from the language's
influence on the "Superplan" language by Heinz Rutishauser and also to some degree Algol. The
first significantly widespread high-level language was Fortran, a machine-independent
development of IBM's earlier Autocode systems. Algol, defined in 1958 and 1960 by committees of
European and American computer scientists, introduced recursion as well as nested
functionsunder lexical scope. It was also the first language with a clear distinction
between value and name-parameters and their corresponding semantics.[5] Algol also introduced
several structured programming concepts, such as the while-do and if-then-else constructs and
its syntax was the first to be described in formal notation – "Backus–Naur form" (BNF). During
roughly the same period, Cobol introduced records (also called structs) and Lisp introduced a fully
general lambda abstraction in a programming language for the first time.

Contents

 1Features
 2Abstraction penalty
 3Relative meaning
 4Execution modes

o 4.1High-level language computer architecture
 5See also
 6References
 7External links

Features[edit]

"High-level language" refers to the higher level of abstraction from machine language. Rather than
dealing with registers, memory addresses, and call stacks, high-level languages deal with variables,
arrays, objects, complex arithmetic or boolean expressions, subroutines and functions,
loops, threads, locks, and other abstract computer science concepts, with a focus on usability over
optimal program efficiency. Unlike low-level assembly languages, high-level languages have few, if
any, language elements that translate directly into a machine's native opcodes. Other features,
such as string handling routines, object-oriented language features, and file input/output, may
also be present. One thing to note about high-level programming languages is that these
languages allow the programmer to be detached and separated from the machine. That is, unlike

https://en.wikipedia.org/wiki/High-level_programming_language#mw-head
https://en.wikipedia.org/wiki/High-level_programming_language#mw-head
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-1
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-kleith-2
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-kleith2-3
https://en.wikipedia.org/wiki/Plankalk%C3%BCl
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-4
https://en.wikipedia.org/wiki/World_War_II
https://en.wikipedia.org/wiki/Heinz_Rutishauser
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Autocode
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Nested_functions
https://en.wikipedia.org/wiki/Nested_functions
https://en.wikipedia.org/wiki/Lexical_scope
https://en.wikipedia.org/wiki/Call_by_value
https://en.wikipedia.org/wiki/Call_by_name
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-5
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Cobol
https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Lambda_abstraction
https://en.wikipedia.org/wiki/High-level_programming_language#Features
https://en.wikipedia.org/wiki/High-level_programming_language#Abstraction_penalty
https://en.wikipedia.org/wiki/High-level_programming_language#Relative_meaning
https://en.wikipedia.org/wiki/High-level_programming_language#Execution_modes
https://en.wikipedia.org/wiki/High-level_programming_language#High-level_language_computer_architecture
https://en.wikipedia.org/wiki/High-level_programming_language#See_also
https://en.wikipedia.org/wiki/High-level_programming_language#References
https://en.wikipedia.org/wiki/High-level_programming_language#External_links
https://en.wikipedia.org/w/index.php?title=High-level_programming_language&action=edit§ion=1
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Usability
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Opcode

low-level languages like assembly or machine language, high-level programming can amplify the
programmer's instructions and trigger a lot of data movements in the background without their
knowledge. The responsibility and power of executing instructions have been handed over to the
machine from the programmer.

Abstraction penalty[edit]

High-level languages intend to provide features which standardize common tasks, permit rich
debugging, and maintain architectural agnosticism; while low-level languages often produce more
efficient code through optimization for a specific system architecture. Abstraction penalty is the
cost that high-level programming techniques pay for being unable to optimize performance or use
certain hardware because they don't take advantage of certain low-level architectural resources.
High-level programming exhibits features like more generic data structures and operations, run-
time interpretation, and intermediate code files; which often result in execution of far more
operations than necessary, higher memory consumption, and larger binary program size.[6][7][8] For
this reason, code which needs to run particularly quickly and efficiently may require the use of a
lower-level language, even if a higher-level language would make the coding easier. In many cases,
critical portions of a program mostly in a high-level language can be hand-coded in assembly
language, leading to a much faster, more efficient, or simply reliably functioning optimised
program.

However, with the growing complexity of modern microprocessor architectures, well-designed
compilers for high-level languages frequently produce code comparable in efficiency to what most
low-level programmers can produce by hand, and the higher abstraction may allow for more
powerful techniques providing better overall results than their low-level counterparts in particular
settings.[9] High-level languages are designed independent of a specific computing system
architecture. This facilitates executing a program written in such a language on any computing
system with compatible support for the Interpreted or JIT program. High-level languages can be
improved as their designers develop improvements. In other cases, new high-level languages
evolve from one or more others with the goal of aggregating the most popular constructs with
new or improved features. An example of this is Scala which maintains backward compatibility
with Java which means that programs and libraries written in Java will continue to be usable even
if a programming shop switches to Scala; this makes the transition easier and the lifespan of such
high-level coding indefinite. In contrast, low-level programs rarely survive beyond the system
architecture which they were written for without major revision. This is the engineering 'trade-off'
for the 'Abstraction Penalty'.

Q.2 Discuss about different data types of C programming Language.

 Ans. Data Type

A data type is a type of data. Of course, that is rather circular definition, and also not very helpful.
Therefore, a better definition of a data type is a data storage format that can contain a specific
type or range of values.
When computer programs store data in variables, each variable must be assigned a specific data
type. Some common data types include integers, floating point numbers, characters, strings,
and arrays. They may also be more specific types, such as dates, timestamps, boolean values, and
varchar (variable character) formats.

https://en.wikipedia.org/w/index.php?title=High-level_programming_language&action=edit§ion=2
https://en.wikipedia.org/wiki/Program_optimization
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-6
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-6
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-8
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Program_optimisation
https://en.wikipedia.org/wiki/Program_optimisation
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/High-level_programming_language#cite_note-9
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://techterms.com/definition/integer
https://techterms.com/definition/floatingpoint
https://techterms.com/definition/character
https://techterms.com/definition/string
https://techterms.com/definition/array
https://techterms.com/definition/boolean

Some programming languages require the programmer to define the data type of a variable
before assigning it a value. Other languages can automatically assign a variable's data type when
the initial data is entered into the variable. For example, if the variable "var1" is created with the
value "1.25," the variable would be created as a floating point data type. If the variable is set to
"Hello world!," the variable would be assigned a string data type. Most programming languages
allow each variable to store a single data type. Therefore, if the variable's data type has already
been set to an integer, assigning string data to the variable may cause the data to be converted to
an integer format.
Data types are also used by database applications. The fields within a database often require a
specific type of data to be input. For example, a company's record for an employee may use a
string data type for the employee's first and last name. The employee's date of hire would be
stored in a date format, while his or her salary may be stored as an integer. By keeping the data
types uniform across multiple records, database applications can easily search, sort, and compare
fields in different records.

Q3. Find the output of the following expressions

a) X=20/5*2+30-5 b) Y=30 – (40/10+6) +10 c) Z= 40*2/10-2+10
Ans.

a) X=20/5*2+30-5

Q4. Describe the syntax of the following statements

a) If – else statement b) for loop c) while loop d) do-while loop

Ans.

Q5. Find the output of the following program segments.

Ans.

https://techterms.com/definition/database

