

CCA-101:
Fundamentals of

IT &
Programming

Assignment - 2

Q1 . What is the difference between Machine Language and High Level

Language?

Ans.

 Machine language, or machine code,

 is the only language that is directly understood by the computer, and it
does not need to be translated. All instructions use binary notation and
are written as a string of 1s and 0s. A program instruction in machine
language may look something like this:

1. 10010101100101001111101010011011100101

High-Level Language

is a programming language that uses English and mathematical symbols,
like +, -, % and many others, in its instructions. When using the term
'programming languages,' most people are actually referring to high-
level languages. High-level languages are the languages most often used
by programmers to write programs. Examples of high-level languages
are C++, Fortran, Java and Python.

To get a flavor of what a high-level language actually looks like, consider
an ATM machine where someone wants to make a withdrawal of $100.
This amount needs to be compared to the account balance to make sure
there are enough funds. The instruction in a high-level computer
language would look something like this:

1. x = 100
2. if balance x:
3. print 'Insufficient balance'
4. else:
5. print 'Please take your money'

This is not exactly how real people communicate, but it is much easier to
follow than a series of 1s and 0s in binary code.

There are a number of advantages to high-level languages.

The first advantage is that high-level languages are much closer to the
logic of a human language.

The second advantage is that the code of most high-level languages is
portable and the same code can run on different hardware

Q2. Discuss about different data types of C programming
Language.

Ans. Data types in C Language
Ad by Valueimpression

Data types specify how we enter data into our programs and what
type of data we enter. C language has some predefined set of data
types to handle various kinds of data that we can use in our
program. These datatypes have different storage capacities.

C language supports 2 different type of data types:

1. Primary data types:

These are fundamental data types in C namely integer(int),

floating point(float), character(char) and void.

2. Derived data types:

Derived data types are nothing but primary datatypes but a little

twisted or grouped together

like array, stucture, union and pointers. These are discussed in

details later.

Data type determines the type of data a variable will hold. If a

variable x is declared as int. it means x can hold only integer

values. Every variable which is used in the program must be
declared as what data-type it is.

https://www.studytonight.com/c/datatype-in-c.php/arrays-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/structures-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/unions-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/pointers-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/variables-in-c.php

Integer Type

 Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Floating point type

Floating types are used to store real numbers.

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

 Size and range of Integer type on 16-bit machine

Character type
Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

void type

void type means no value. This is usually used to specify the type of

functions which returns nothing. We will get acquainted to this datatype
as we start learning more advanced topics in C language, like functions,
pointers etc.

Q3. Find the output of the following expressions

A) X=20/5*2+30-5

B) Y=30 – (40/10+6) +10

C) Z= 40*2/10-2+10

Ans.

A) X=20/5*2+30-5

X=4*2+30-5

X=8+30-5

X=38-5

X=33

 B) Y=30 – (40/10+6) +10

https://www.studytonight.com/c/datatype-in-c.php/user-defined-functions-in-c.php

C) Z= 40*2/10-2+10

 Z=40*0.2-2+10

 Z=8-2+10

 Z=6+10

 Z=16

Q4. Describe the syntax of the following statements

 A) If – else statement

 B) for loop

 C) while loop

 D) do-while loop

Ans.

(A) If – else statement

 if Statement

The syntax of the if statement in C programming is:

if (test expression)
{
 // statements to be executed if the test expression is true
}

How if statement works?

The if statement evaluates the test expression inside the parenthesis ().

 If the test expression is evaluated to true, statements inside the body of if are

executed.

 If the test expression is evaluated to false, statements inside the body of if are

not executed.

To learn more about when test expression is evaluated to true (non-zero value)

and false (0), check relational and logical operators.

Example 1: if statement

// Program to display a number if it is negative

#include <stdio.h>
int main() {
 int number;

 printf("Enter an integer: ");
 scanf("%d", &number);

 // true if number is less than 0
 if (number < 0) {
 printf("You entered %d.\n", number);
 }

 printf("The if statement is easy.");

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

 return 0;
}

Output 1

Enter an integer: -2
You entered -2.
The if statement is easy.

When the user enters -2, the test expression number<0 is evaluated to true.

Hence, You entered -2 is displayed on the screen.

Output 2

Enter an integer: 5
The if statement is easy.

When the user enters 5, the test expression number<0 is evaluated to false

and the statement inside the body of if is not executed

 else Statement

The if statement may have an optional else block. The syntax of

the if..else statement is:

if (test expression) {
 // statements to be executed if the test expression is true
}
else {
 // statements to be executed if the test expression is false
}

How if...else statement works?

If the test expression is evaluated to true,

 statements inside the body of if are executed.

 statements inside the body of else are skipped from execution.

If the test expression is evaluated to false,

 statements inside the body of else are executed

 statements inside the body of if are skipped from execution.

Example 2: if...else statement

// Check whether an integer is odd or even

#include <stdio.h>
int main() {
 int number;
 printf("Enter an integer: ");
 scanf("%d", &number);

 // True if the remainder is 0
 if (number%2 == 0) {

 printf("%d is an even integer.",number);
 }
 else {
 printf("%d is an odd integer.",number);
 }

 return 0;
}

Output

Enter an integer: 7
7 is an odd integer.

When the user enters 7, the test expression number%2==0 is evaluated to

false. Hence, the statement inside the body of else is executed.

(B) for loop

The For Loop

The for loop has the following syntax:

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been

executed.

Example

for (i = 0; i < 5; i++) {

 text += "The number is " + i + "
";

}

From the example above, you can read:

Statement 1 sets a variable before the loop starts (var i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5).

Statement 3 increases a value (i++) each time the code block in the loop has
been executed.

Statement 1

Normally you will use statement 1 to initialize the variable used in the loop (i =
0).

This is not always the case, JavaScript doesn't care. Statement 1 is optional.

You can initiate many values in statement 1 (separated by comma):

Example

for (i = 0, len = cars.length, text = ""; i < len; i++) {

 text += cars[i] + "
";

}

And you can omit statement 1 (like when your values are set before the loop
starts):

Example

var i = 2;

var len = cars.length;

var text = "";

for (; i < len; i++) {

 text += cars[i] + "
";

}

Statement 2

Often statement 2 is used to evaluate the condition of the initial variable.

This is not always the case, JavaScript doesn't care. Statement 2 is also
optional.

If statement 2 returns true, the loop will start over again, if it returns false, the
loop will end.

If you omit statement 2, you must provide a break inside the loop. Otherwise
the loop will never end. This will crash your browser. Read about breaks in a
later chapter of this tutorial.

Statement 3

Often statement 3 increments the value of the initial variable.

This is not always the case, JavaScript doesn't care, and statement 3 is
optional.

Statement 3 can do anything like negative increment (i--), positive increment (i
= i + 15), or anything else.

Statement 3 can also be omitted (like when you increment your values inside
the loop):

Example

var i = 0;

var len = cars.length;

for (; i < len;) {

 text += cars[i] + "
";

 i++;

}

(C) while loop

The while loop loops through a block of code as long as a specified condition is
true.

Syntax

while (condition) {

}

Example

In the following example, the code in the loop will run, over and over again, as
long as a variable (i) is less than 10:

Example

while (i < 10) {

 text += "The number is " + i;

 i++;

}

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code
block once, before checking if the condition is true, then it will repeat the loop
as long as the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

Example

The example below uses a do/while loop. The loop will always be executed at
least once, even if the condition is false, because the code block is executed
before the condition is tested:

Example

do {

 text += "The number is " + i;

 i++;

}

while (i < 10);

Do not forget to increase the variable used in the condition, otherwise the loop
will never end!

Comparing For and While

If you have read the previous chapter, about the for loop, you will discover
that a while loop is much the same as a for loop, with statement 1 and
statement 3 omitted.

The loop in this example uses a for loop to collect the car names from the cars
array:

Example

var cars = ["BMW", "Volvo", "Saab", "Ford"];

var i = 0;

var text = "";

for (;cars[i];) {

 text += cars[i] + "
";

 i++;

}

The loop in this example uses a while loop to collect the car names from the
cars array:

Example

var cars = ["BMW", "Volvo", "Saab", "Ford"];

var i = 0;

var text = "";

while (cars[i]) {

 text += cars[i] + "
";

 i++;

}

Exercise:

Create a loop that runs as long as i is less than 10.

var i = 0;

 (i 10) {
 console.log(i);
 i++
}

D) do-while loop

The Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the code
block once, before checking if the condition is true, then it will repeat the loop
as long as the condition is true.

Syntax

do {

}

while (condition);

Example

The example below uses a do/while loop. The loop will always be executed at
least once, even if the condition is false, because the code block is executed
before the condition is tested:

Example

do {

 text += "The number is " + i;

 i++;

}

while (i < 10);

Do not forget to increase the variable used in the condition, otherwise the loop
will never end!

Comparing For and While

If you have read the previous chapter, about the for loop, you will discover
that a while loop is much the same as a for loop, with statement 1 and
statement 3 omitted.

The loop in this example uses a for loop to collect the car names from the cars
array:

Example

var cars = ["BMW", "Volvo", "Saab", "Ford"];

var i = 0;

var text = "";

for (;cars[i];) {

 text += cars[i] + "
";

 i++;

}

The loop in this example uses a while loop to collect the car names from the
cars array:

Example

var cars = ["BMW", "Volvo", "Saab", "Ford"];

var i = 0;

var text = "";

while (cars[i]) {

 text += cars[i] + "
";

 i++;

}

Test Yourself With Exercises

Exercise:

Create a loop that runs as long as i is less than 10.

var i = 0;

 (i 10) {
 console.log(i);
 i++
}

