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Chapter 1 

 

INTRODUCTION TO COMPUTER AND 

PROGRAMMING 
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Chapter 1 

 Hardware and software 

 Programming Languages 

 Problem solution and software development 

 Algorithms 
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Computer Hardware 

 Input unit 

 Output unit 

 Memory unit 

 ALU 

 CPU 

 Secondary storage 
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Input Unit and Output Unit 

 Input Unit 
 

     - It obtains information from various input devices and 

places this information at the disposal of the other units. 

     - Examples of input devices: keyboards, mouse devices.  
 

 Output Unit 
 

     - It takes information that has been processed by the 

computer and places it on various output devices.  

     - Most output from computer is displayed on screens, printed 

on paper, or used to control other devices. 
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Memory Unit  

 The memory unit stores information. Each computer 

contains memory of two main types: RAM and ROM. 

  

 RAM (random access memory) is volatile. Your 

program and data are stored in RAM when you are using 

the computer. 

 

 ROM (read only memory) contains fundamental 

instructions that cannot be lost or changed by the user. 

ROM is non-volatile. 
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ALU and CPU 

 Arithmetic and Logic Unit (ALU) 
 

     ALU performs all the arithmetic and logic 

operations.  

     Ex: addition, subtraction, comparison, etc.. 

  

 CPU 
 

     The unit supervises the overall operation of the 

computer.  
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Secondary Storage  

 Secondary storage devices are used to be 

permanent storage area for programs and data. 

 Examples: magnetic tapes, magnetic disks and 

optical storage CD. 

  

  Magnetic hard disk 

  Floppy disk 

  CD ROM 

  etc… 
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Some terminology  

 A computer program is a set of instructions used to 

operate a computer to produce a specific result. 

  

 Writing computer programs is called computer 

programming. 

  

 The languages used to create computer programs 

are called programming languages. 

  

 Software means a program or a set of programs  
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Machine languages 

 Machine languages are the lowest level of computer 

languages. Programs written in machine language 

consist of 1s and 0s. 
 

 Programs in machine language can control directly 

to the computer’s hardware. 
 

 Example:  

  00101010  000000000001  000000000010 

  10011001  000000000010  000000000011 

  

       opcode address parts 
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Machine languages (cont.) 

 A machine language instruction consists of two 

parts: an instruction part and an address part. 

  

 The instruction part (opcode) tells the computer the 

operation to be performed. 

  

 The address part specifies the memory address of 

the data to be used in the instruction. 
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Assembly languages 

 Assembly languages perform the same tasks as 

machine languages, but use symbolic names for 

opcodes and operands instead of 1s and 0s. 

  

  LOAD BASEPAY 

  ADD OVERPAY 

  STORE GROSSPAY 

 

 An assembly language program must be translated 

into a machine language program before it can be 

executed on a computer. 
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Assembler 

Translation 

program 

(assembler) 

Assembly 

language 

program 

Machine 

language 

program 
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High-level Programming Languages  

 High level programming languages create computer 

programs using instructions that much easier to 

understand. 

 

 Programs in a high-level languages must be 

translated into a low level language using a program 

called a compiler. 

 

 A compiler translates programming code into a low-

level format. 
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High-level Programming Languages (cont.) 

 High-level languages allow programmers to write 

instructions that look like every English sentences 

and commonly-used mathematical notations. 

  

 Each line in a high-level language program is called 

a statement. 

 

 Example:         Result = (First + Second)*Third 
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Application and System Software  

 Two types of computer programs are: application 

software and system software. 

 

 Application software consists of those programs 

written to perform particular tasks required by the 

users. 

  

 System software is the collection of programs that 

must be available to any computer system for it to 

operate. 
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Examples of system software 

 The most important system software is the operating 
system. 

  

     MS-DOS, UNIX, MS WINDOWS, MS WINDOWS NT 

  

 Many operating systems allow user to run multiple 
programs. Such operating systems are called 
multitasking systems. 

  

 Beside operating systems, language translators are 
system software. 
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PROGRAMMING LANGUAGES  

 Some well-known programming languages: 

     FORTRAN  1957 

     COBOL  1960s 

     BASIC  1960s 

     PASCAL  1971 Structure programming 

     C 

     C++    Object-oriented programming 

     Java 

 

 What is Syntax? 

  

     A programming language’s syntax is the set of rules for writing 

correct language statements. 
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The C Programming Language  

 In the 1970s, at Bell Laboratories, Dennis Ritchie and Brian 
Kernighan designed the C programming language. 

 

 C was used exclusively on UNIX and on mini-computers. 
During the 1980s, C compilers were written for other flatforms, 
including PCs. 

  

 To provide a level of standardization for C language, in 1989, 
ANSI created a standard version of C, called ANSI C. 

 

 One main benefit of C :  it is much closer to assembly language 
other than other high-level programming languages. 

 

 The programs written in C often run faster and more efficiently 
than programs written in other high-level programming 
language. 
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The C++ Programming Language  

 In 1985, at Bell Laboratories, Bjarne Stroutrup created C++ 
based on the C language. C++ is an extension of C that adds 
object-oriented programming capabilities. 

 

 C++ is now the most popular programming language for writing  
programs that run on Windows and Macintosh. 

  

 The standardized version of C++ is referred to as ANSI C++. 

  

  

 The ANSI standards also define run-time libraries, which 
contains useful functions, variables, constants, and other 
programming items that you can add to your programs. 

  

 The ANSI C++ run-time library is called Standard Template 
Library or Standard C++ Library  
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Structured Programming  

 During 1960s, many large softwares encountered severe 

difficulties. Software schedules were late, costs exceeded 

budgets and finished products were unreliable.  

 People realized that software development was a far more 

complex activity than they had imagined.  

 Research activity in the 1960s  Structured Programming. 

 It is a discipline approach to writing programs that are clearer 

than unstructured programs, easier to test and debug and 

easier to modify.  

 Chapter 5 discusses the principles of structured programming.   

 Pascal (Niklaus Wirth) in 1971.  

 Pascal was designed for teaching structured programming in 

academic environments and rapidly became the preferred 

programming languages in most universities.  
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Object Oriented Programming  

 In the 1980s, there is another revolution in the 

software community: object- oriented programming.  

 Objects are reusable software components that 

model items in the real world.  

 Software developers are discovering that: using a 

modular, object-oriented design and implementation 

approach can make software development much more 

productive.   

 OOP refers to the creation of reusable software 

objects that can be easily incorporated into another 

program.  
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Object Oriented Programming (cont.) 

 An object is programming code and data that can be 

treated as an individual unit or component.  

 Data refers to information contained within variables, 

constants, or other types of storage structures. The 

procedures associated with an object are referred as 

functions or methods.  

 Variables that are associated with an object are 

referred to as properties or attributes.  

 OOP allows programmers to use programming 

objects that they have written themselves or that 

have been written by others.  
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PROBLEM SOLUTION AND SOFTWARE 

DEVELOPMENT  

 Software development consists of three overlapping 

phases 

  

 - Development and Design 

 - Documentation 

 - Maintenance 

  

 Software engineering is concerned with creating 

readable, efficient, reliable, and maintainable 

programs and systems.  
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Phase I: Development and Design  
The first phase consists of four steps: 
 

1. Analyse the problem 

 Analyse the problem requirements to understand what the program 
must do, what outputs are required and  what inputs are needed. 

  

2. Develop a Solution 

 We develop an algorithm to solve the problem. 

     Algorithm is a sequence of steps that describes how the data are to 
be processed to produce the desired outputs. 

  

3. Code the solution 

 This step consists of translating the algorithm into a computer 
program using a programming language. 

  

4. Test and correct the program 
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Phase II: Documentation  

 Documentation requires collecting critical 

documents during the analysis, design, coding, and 

testing. 

 There are five documents for every program 

solution: 
 

 -         Program description 

 -         Algorithm development and changes 

 -         Well-commented program listing 

 -         Sample test runs 

 -         User’s manual 
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Phase III: Maintenance  

 This phase is concerned with  

   -  the ongoing correction of problems,  

      -  revisions to meet changing needs and  

      - the addition of new features. 
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ALGORITHMS  

 You can describe an algorithm by using flowchart 

symbols. By that way, you obtain a flowchart.  

 Flow chart is an outline of the basic structure or 

logic of the program.  

 Another way to describe an algorithm is using 

pseudocode. 

 Since flowcharts are not convenient to revise, they 

have fallen out of favor by programmers. Nowadays, 

the use of pseudocode has gained increasing 

acceptance.  
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Flowchart symbols 

 

Terminal 

  

Input/output    

  

  

Process 

  

  

Flowlines 

  

  

 Decision 
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Example 
 

 
Start 

Input Name, 

Hours, Rate 

Calculate 

Pay   Hours  Rate 

Dislay 

Name, Pay 

End 
 

Note: Name, Hours 

and Pay are variables 

in the program. 
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Algorithms in pseudo-code  

 You also can use English-like phases to desribe an 

algorithm. In this case, the description is called 

pseudocode. 

  

 Example: 

  

 Input the three values into the variables Name, 

Hours, Rate. 

 Calculate      Pay = Hours  Rate. 

 Display Name and Pay. 
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Loops Note: 

1.   Loop is a very important 

concept in programming. 

2.   NUM  NUM + 1 means 

old value of NUM + 1 

becomes new value of NUM.  

 
 

Start 

NUM  4 

SQNUM  NUM
2
 

Print 

NUM, SQNUM 

NUM  NUM + 1 

NUM> 9? 

STOP 

No 

Yes 

 

The  algorithm can be described 

in pseudocode as follows: 

NUM  4 

do  

   SQNUM NUM2 

   Print NUM, SQNUM 

   NUM  NUM + 1 

while (NUM <= 9) 


