ASSIGNMENT – 02 DATA COMMUNICATIONS

DHARANIK

CCA-102 DATA COMMUNICATIONS

- 1. WHAT ARE THE DIFFERENT TYPES OF NETWORKS?
 - Local area network (LAN)...
 - Personal area network (PAN)...
 - Wireless local area network (WLAN)...
 - Campus area network (CAN)...
 - Metropolitan area network (MAN)...
 - Wide area network (WAN)...
 - Storage area network (SAN)...
 - Passive optical local area network (POLAN)

2. Explain the shielded twisted pair (STP) and Unshielded twisted pair (UTP)

STP:

Shielded twisted pair cabling acts as a conducting shield by covering the four pairs of signals-carrying wires as a means to reduce electromagnetic interference. There are a variety of different types of STP cables, such as a foil twisted pair (FTP) and a shielded foil twisted pair (S/FTP).

UTP:

UTP cable is a type of copper cable widely used for networking purpose. UTP cables consists of pairs of insulted wires that are twisted together to reduce interference and crosstalk. They are commonly used in Ethernet networks for transmitting data signals.

3. What is difference between baseband and broadband transmission?

Basis of	Baseband	Broadband		
Comparison	Transmission	Transmission		
Type of Signals	In baseband	In broadband		
	,	transmission, the		
		g type of signalling		
	used is digital.	used is analog.		
Direction Type	Baseband Broadband			
	Transmission is	Transmission is		
	bidirectional in	unidirectional in		
	nature.	nature.		
Signal	The Signal can be	Sending of Signal in		
Transmission	sent in both	one direction only.		
	directions.			
Distance covered	Signals can only	Signals can be		
by the	travel over short travelled over			
Signal		Long distances		
	attenuation is	_		
	required.	attenuated.		
Data Streams	It can only transfer			
	one data stream at	multiple signal		
		waves at once but		
	directional mode.	in one direction		
		only.		
	Baseband	Broadband		
Installation and		transmission is		
Maintenance	_	difficult to install		
	maintain.	and maintain.		

	This	transmi	ssion	This	transmiss	sion
Cost	is	cheaper	to	is	expensive	to
	desig	gn.		desig	gn.	

4. What is the difference between a hub, modern, router and a switch?

- Routers-connects a modern to different computer networks, ensuring that Internet traffic goes to the right networks. Switches —connect devices. Gateway regulate traffic between two or more dissimilar networks.
- The key difference between hubs, switches and bridges is that hubs operate at Layer 1 of the OSI model, while bridges and switches work with MAC addresses at Layer 2. Hubs broadcast incoming traffic on all ports, whereas bridges and switches only route traffic, towards their addressed destinations.

5. When you move the NIC cards from one PC, does the MAC address gets transferred as well?

Yes, that's because MAC addressed are hard-wired into the NIC circuitry, not the PC. This also means that a PC can have a different MAC address when the NIC card was replace by another one.

6. When troubleshooting computer network problems, what common hardware-related problems can occur?

Some network problems can arise from faulty hardware, such as routers, switches, firewalls, and even from unexpected usage patterns, like network bandwidth spikes, changes in app configuration, or security breaches.

7.In a network that contains two servers and twenty workstations, where is the best place to install an Antivirus program?

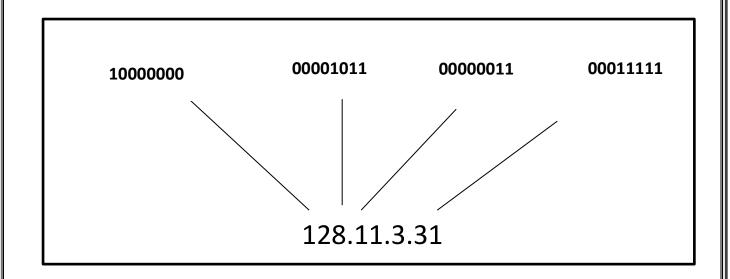
In a network that contains two servers and twenty workstations, the best place to install an Anti-virus is on the server. This is because the server is the main port for all the network traffic, and so it is more important to ensure that the server is free of and virus other security risks.

8.Define Static IP and Dynamic IP? Discuss the difference between IPV4 and IPV6.

Static IP addresses:

A computer on the Internet can have a static IP address, which means it stays the same over time, or a dynamic IP address, which means the address can change over time.

Dynamic IP:


A dynamic IP address is a temporary address for devices connected to a network that continually changes over time. An Internet Protocol (IP) address is a number used by computers to identify host and network interfaces, as well as different locations on a network.

DIFFERENCE BETWEEN IPV4 AND IPV6.

IPv4:

IPv4 address consists of two things that are the network address and the host address. It sands for Internet Protocal version four. It was introduced in 1981 by DARPA and was the first deployed version in 1982 for production on SATNET and on the ARPANET in January 1983. IPv4 addresses are 32-bit integers that have to be expressed in Decimal Notation. It is represented by 4 numbers separated by dots in the range of 0-255, which have to be converted to 0 and 1, to be understood by computers. For example, An IPv4 Address can be written as 189.123.123.90. IPv4 Address format is a 32-bit Address that comprises binary digits

separated by a dot (.).

IPv6:

<u>IPv6</u> is based on IPv4 and stands for Internet Protocol version 6. It was first introduced in December 1995 by Internet Engineering Task Force. IP version 6 is the new version of Internet Protocol, which is way better than IP version 4 in terms of complexity and efficiency. IPv6 is written as a group of 8 hexadecimal numbers separated by colon (:). It can be written as 128bits of 0s and 1s.

IPv6 Address Format:

IPv6 Address Format is a 128-bit IP Address, which is written in a group of 8 hexadecimal numbers separated by colon (:).

ABCD: EF01: 2345: 6789: ABCD: B201: 5482: D023

16 Bytes

DIFFERENCE BETWEEN IPV4 AND IPV6:

IPv4	IPv6		
IPv4 has a 32-bit address	IPv6 has al28-bit address		
length	length		
It Supports Manual and	It supports Auto and		
DHCP address configuration	renumbering address		
	configuration		
In IPv4 end to end,	In IPv6 end to end,		
connection integrity is	connection integrity is		
Unachievable	Achievable		
It can generate 4.29 x 109	The address space of IPv6 is		
address space	quite large it can produce 3.4		
	x 1038 address space		
The Security feature is	IPSEC is an inbuilt security		
dependent on the application	feature in the IPv6 protocol		
Address representation of	Address Representation of		

IPv4 is in decimal	IPv6 is in hexadecimal			
Fragmentation performed by	In IPv4 fragmentation is			
Sender and forwarding	performed only by the sender			
routers				
In IPv4 Packet flow	<u> </u>			
identification is not available				
	and uses the flow label field in			
T TD 4 1 1 C 11 .	the header			
In IPv4 checksum field is				
available	available			
It has a broadcast Message				
Transmission Scheme	message transmission scheme			
In IDv4 Enomintion and	is available			
Authentication facility not	In IPv6 Encryption and			
provided	Authentication are provided			
_ L	IPv6 has a header of 40 bytes			
bytes	fixed			
	Not all IPv6 can be converted			
	to IPv4			
IPv4 consists of 4 fields	IPv6 consists of 8 fields,			
which are separated by				
addresses dot (.)	colon			
IPv4's IP addresses are	IPv6 does not have any classes			
divided into five different	of the IP address			
classes. Class A, Class B,				
Class C, Class D, Class E				
	IPv6 does not support VLSM			
(Variable Length subnet mask				
)				
Example of IPv4 : 66.94.29.13	Example of IPv6:			
	2001:0000:3238:DFEL:			
	0063:0000:0000:FEFB			

9. Discuss TCP/IP model in detail.

Transmission Control Protocol (TCP) is a communications standard that enables application programs and computing devices to exchange message over a network. It is designed to send packets across the internet and ensure the successful delivery of data and messages over networks. TCP is one of the basic standards that define the rules of the internet and is included within the standards defined by the Internet Engineering Task Force (IETF). It is one of the most communications and ensures end-to-end data delivery.

TCP organize data so that it can be transmitted between a server and client. It guarantees the integrity of the data being communicated over a network. Before it transmits data, TCP establish a connection between a source and its destination. which it remains live until ensures communication beings. It then breaks large amounts of data into smaller packets, while ensuring data integrity is in place throughout the process. As a result, high-level protocols that need to transmit data all use TCP Protocol. Example include peer-to-peer sharing methods like File Transfer Protocol (FTP), secure Shell (SSH), and Telnet. It is also used to send and receive email through Internet Message Access Protocol (IMAP), Post Office Protocol (POP), and Simple Mail Transfer Protocol (STMP), and for web access through the Hypertext Transfer Protocol (HTTP).

An alternative to TCP in networking is the User Datagram Protocol (UDP), which is used to establish low-latency connections between applications and decrease transmission time. TCP can be an expensive network tool as it includes absent or corrupted packets and protects data delivery with controls like acknowledgments, connection startup, and flow control. UDP does not provide error connection or packet sequencing nor does it signal a destination before it delivers data, which makes it less reliable but less expensive. As such, it is a good option for time-sensitive situation, such as Domain Name System (DNS) lookup, Voice over Internet Protocol (VoIP), and streaming media.

10.What is Web Browser (Browser)? Give example of browsers

A Web browser is a type of software that allows you to find and view websites on the Internet. Even if you didn't know it, you're using a web browser right now to read this page! There are many different web browsers, but some of the most common ones include Google Chrome, Safari, and Mozilla Firefox.

11. What is a search engine? Give example.

A search engine is a web-based tool that enables users to locate information on the World Wide Web. Popular examples of search engines are Google, Yahoo! And MSN Search....

12. What is the Internet & WWW? What are the uses of internet in our daily life?

Internet:

The internet is a global network of interconnected computers, servers, phones, and smart appliances that communicate with each other using the transmission control protocol (TCP) standard to enable a fast exchange of information and files, along with other types of services.

WWW:

World-Wide Web (also called WWW or W3) is a hypertext-based information system. Any word in a hypertext document can be specified as a pointer to a different hypertext document where more information pertaining to that word can be found.

What are the uses of internet in our daily life?

- Uses of the Internet in Education...
- Internet Use to Speed Up Daily Tasks...
- Use of the Internet for Shopping ...
- Internet For Research & Development...
- Business Promotion and Innovation...
- Communication...
- Digital Transactions...
- Money Management...

13. What is an Internet Service Provider? Give some example of ISP in India.

The examples of some internet service providers are Hathway, BSNL, Tata teleservices, Verizon, Reliance Jio, ACT Fibernet and many more working in India as well as worldwide. Internet service providers or ISPs are responsible for providing services for using the Internet.

14. Discuss the difference between MAC address, IP address and Port address.

MAC address are used to identify a node's unique address, whereas IP addresses are primarily used to identify a node's connectivity to a network. The MAC address is a hardware-based, burnt-in, or physical address, whereas the IP address is a software-based or logical address.

15. How do we view my Internet browser's history?

- On your computer, open Chrome.
- In the address bar, enter @history.
- Press tab or space. You can also click Search History in the suggestions.
- Enter keywords for the page you previously visited. Select the page from the list.