
CCA-101:

Fundamentals of IT &

Programming

Assignment - 2

Q1. What is the difference between Machine Language and High Level

Language?

Ans. Both High level language and low level language are
the programming languages’s types.
The main difference between high level language and low level
language is that, Programmers can easily understand or interpret or compile
the high level language in comparison of machine. On the other hand,
Machine can easily understand the low level language in comparison of
human beings.
Examples of high level languages are C, C++, Java, Python, etc.
Let’s see the difference between high level and low level languages:

1. It is programmer friendly language. It is a machine friendly language.

2.

High level language is less memory

efficient.

Low level language is high memory

efficient.

3. It is easy to understand. It is tough to understand.

https://www.geeksforgeeks.org/introduction-to-programming-languages/
http://www.geeksforgeeks.org/c/
http://www.geeksforgeeks.org/c-plus-plus/
http://www.geeksforgeeks.org/java/
https://www.geeksforgeeks.org/python-programming-language/

4. It is simple to debug. It is complex to debug comparatively.

5. It is simple to maintain. It is complex to maintain comparatively.

6. It is portable. It is non-portable.

7. It can run on any platform. It is machine-dependent.

8.

It needs compiler or interpreter for

translation. It needs assembler for translation.

9. It is used widely for programming.

It is not commonly used now-a-days in

programming.

Q2. Discuss about different data types of C programming
Language.

Ans.
Data types specify how we enter data into our programs and what type of data we enter. C

language has some predefined set of data types to handle various kinds of data that we can

use in our program. These datatypes have different storage capacities.

C language supports 2 different type of data types:

1. Primary data types:

These are fundamental data types in C namely integer(int), floating point(float),

character(char) and void.

2. Derived data types:

Derived data types are nothing but primary datatypes but a little twisted or grouped

together like array, stucture, union and pointers. These are discussed in details

later.

Data type determines the type of data a variable will hold. If a variable x is declared as int.

it means x can hold only integer values. Every variable which is used in the program must be

declared as what data-type it is.

https://www.studytonight.com/c/datatype-in-c.php/arrays-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/structures-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/unions-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/pointers-in-c.php
https://www.studytonight.com/c/datatype-in-c.php/variables-in-c.php

Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to 2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating types are used to store real numbers.

Size and range of Integer type on 16-bit machine

Character type
Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

void type
void type means no value. This is usually used to specify the type of functions which returns

nothing. We will get acquainted to this datatype as we start learning more advanced topics in

C language, like functions, pointers etc.

Q3. Find the output of the following expressions

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

https://www.studytonight.com/c/datatype-in-c.php/user-defined-functions-in-c.php

a) X=20/5*2+30-5 b) Y=30 – (40/10+6) +10 c) Z= 40*2/10-2+10

Ans.(A) X=20/5*2+30-5
 X=4*2+30-5
 X=8+30-5
 X=38-5
 X=33

(B)

(C) Z=40*2/10-2+10
 Z=40*0.2-2+10
 Z=8-2+10
 Z=6+10
 Z=16

Q4. Describe the syntax of the following statements
a) If – else statement b) for loop c) while loop d) do-while loop

Ans. (A) Example

If the current time (HOUR) is less than 20:00, output "Good day" in an

element with id="demo":

var time = new Date().getHours();

if (time < 20) {

 document.getElementById("demo").innerHTML = "Good day"

The if/else statement executes a block of code if a specified condition is true.

If the condition is false, another block of code can be executed.

The if/else statement is a part of JavaScript's "Conditional" Statements,

which are used to perform different actions based on different conditions.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition
is true

 Use else to specify a block of code to be executed, if the same
condition is false

 Use else if to specify a new condition to test, if the first condition is
false

 Use switch to select one of many blocks of code to be execute

Syntax

The if statement specifies a block of code to be executed if a condition is

true:

if (condition) {

 // block of code to be executed if the condition is true

}

The else statement specifies a block of code to be executed if the condition
is false:

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

The else if statement specifies a new condition if the first condition is false:

if (condition1) {

 // block of code to be executed if condition1 is true

https://www.w3schools.com/jsref/jsref_switch.asp

} else if (condition2) {

 // block of code to be executed if the condition1 is false and

condition2 is true

} else {

 // block of code to be executed if the condition1 is false and

condition2 is false

}

(B)

Loops are handy, if you want to run the same code over and over again,

each time with a different value.

Often this is the case when working with arrays:

Instead of writing:

text += cars[0] + "
";

text += cars[1] + "
";

text += cars[2] + "
";

text += cars[3] + "
";

text += cars[4] + "
";

text += cars[5] + "
";

You can write:

var i;

for (i = 0; i < cars.length; i++) {

 text += cars[i] + "
";

}

JavaScript supports different kinds of loops:

 for - loops through a block of code a number of times

 for/in - loops through the properties of an object

 for/of - loops through the values of an iterable object

 while - loops through a block of code while a specified condition is true

 do/while - also loops through a block of code while a specified

condition is true

The for loop has the following syntax:

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been

executed.

Example

for (i = 0; i < 5; i++) {

 text += "The number is " + i + "
";

}

From the example above, you can read:

Statement 1 sets a variable before the loop starts (var i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5).

Statement 3 increases a value (i++) each time the code block in the loop has
been executed.

Statement 1

Normally you will use statement 1 to initialize the variable used in the loop (i
= 0).

This is not always the case, JavaScript doesn't care. Statement 1 is optional.

You can initiate many values in statement 1 (separated by comma):

Example

for (i = 0, len = cars.length, text = ""; i < len; i++) {

 text += cars[i] + "
";

}

And you can omit statement 1 (like when your values are set before the loop

starts):

Example

var i = 2;

var len = cars.length;

var text = "";

for (; i < len; i++) {

 text += cars[i] + "
";

}

Statement 2

Often statement 2 is used to evaluate the condition of the initial variable.

This is not always the case, JavaScript doesn't care. Statement 2 is also
optional.

If statement 2 returns true, the loop will start over again, if it returns false,
the loop will end.

If you omit statement 2, you must provide a break inside the loop.
Otherwise the loop will never end. This will crash your browser. Read about

breaks in a later chapter of this tutorial.

Statement 3

Often statement 3 increments the value of the initial variable.

This is not always the case, JavaScript doesn't care, and statement 3 is
optional.

Statement 3 can do anything like negative increment (i--), positive
increment (i = i + 15), or anything else.

Statement 3 can also be omitted (like when you increment your values inside
the loop):

Example

var i = 0;

var len = cars.length;

for (; i < len;) {

 text += cars[i] + "
";

 i++;

}

The For/In Loop

The JavaScript for/in statement loops through the properties of an object:

Example

var person = {fname:"John", lname:"Doe", age:25};

var text = "";

var x;

for (x in person) {

 text += person[x];

}

The For/Of Loop

The JavaScript for/of statement loops through the values of an iterable

objects.

for/of lets you loop over data structures that are iterable such as Arrays,

Strings, Maps, NodeLists, and more.

The for/of loop has the following syntax:

for (variable of iterable) {

 // code block to be executed

}

variable - For every iteration the value of the next property is assigned to the
variable. Variable can be declared with const, let, or var.

iterable - An object that has iterable properties.

Looping over an Array

Example

var cars = ["BMW", "Volvo", "Mini"];

var x;

for (x of cars) {

 document.write(x + "
");

}

Looping over a String

Example

var txt = "JavaScript";

var x;

for (x of txt) {

 document.write(x + "
");

}

(C) The While Loop

The while loop and the do/while loop will be explained in the next chapter.

est Yourself With Exercises

Exercise:

Create a loop that runs from 0 to 9.

var i;

 (= ; < ;) {

 console.log(i);

}

The While Loop

The while loop loops through a block of code as long as a specified condition

is true.

Syntax

while (condition) {

 // code block to be executed

}

Example

In the following example, the code in the loop will run, over and over again,

as long as a variable (i) is less than 10:

Example

while (i < 10) {

 text += "The number is " + i;

 i++;

}

(D) He Do/While Loop

The do/while loop is a variant of the while loop. This loop will execute the

code block once, before checking if the condition is true, then it will repeat
the loop as long as the condition is true.

Syntax

do {

 // code block to be executed

}

while (condition);

Example

The example below uses a do/while loop. The loop will always be executed at

least once, even if the condition is false, because the code block is executed
before the condition is tested:

Example

do {

 text += "The number is " + i;

 i++;

}

while (i < 10);

Do not forget to increase the variable used in the condition, otherwise the
loop will never end!

Comparing For and While

If you have read the previous chapter, about the for loop, you will discover

that a while loop is much the same as a for loop, with statement 1 and

statement 3 omitted.

The loop in this example uses a for loop to collect the car names from the

cars array:

Example

var cars = ["BMW", "Volvo", "Saab", "Ford"];

var i = 0;

var text = "";

for (;cars[i];) {

 text += cars[i] + "
";

 i++;

}

The loop in this example uses a while loop to collect the car names from the

cars array:

Example

var cars = ["BMW", "Volvo", "Saab", "Ford"];

var i = 0;

var text = "";

while (cars[i]) {

 text += cars[i] + "
";

 i++;

}

est Yourself With Exercises

Exercise:

Create a loop that runs as long as i is less than 10.

var i = 0;

 (i 10) {

 console.log(i);

 i++

}

Q5. Find the output of the following program segments

Ans.

