
Q1. What is the difference between Machine Language and High Level Language?

Ans. High-Level Languages

A high-level language is a programming language that uses English and
mathematical symbols, like +, -, % and many others, in its instructions. When
using the term 'programming languages,' most people are actually referring to
high-level languages. High-level languages are the languages most often used by
programmers to write programs. Examples of high-level languages are C++,
Fortran, Java and Python.

To get a flavor of what a high-level language actually looks like, consider an ATM
machine where someone wants to make a withdrawal of $100. This amount needs
to be compared to the account balance to make sure there are enough funds. The
instruction in a high-level computer language would look something like this:

x = 100
if balance x:
 print 'Insufficient balance'
else:
 print 'Please take your money'

This is not exactly how real people communicate, but it is much easier to follow
than a series of 1s and 0s in binary code.

There are a number of advantages to high-level languages. The first advantage is
that high-level languages are much closer to the logic of a human language. A
high-level language uses a set of rules that dictate how words and symbols can
be put together to form a program. Learning a high-level language is not unlike
learning another human language - you need to learn vocabulary and grammar so
you can make sentences. To learn a programming language, you need to learn
commands, syntax and logic, which correspond closely to vocabulary and
grammar.

The second advantage is that the code of most high-level languages is portable
and the same code can run on different hardware. Both machine code and
assembly languages are hardware specific and not portable. This means that the
machine code used to run a program on one specific computer needs to be
modified to run on another computer. Portable code in a high-level language can
run on multiple computer systems without modification. However, modifications
to code in high-level languages may be necessary because of the operating
system. For example, programs written for Windows typically don't run on a Mac.

A high-level language cannot be understood directly by a computer, and it needs
to be translated into machine code. There are two ways to do this, and they are
related to how the program is executed: a high-level language can be compiled or
interpreted.

Compiler
A compiler is a computer program that translates a program written in a high-level language to
the machine language of a computer. The high-level program is referred to as 'the source code.'
A typical computer program processes some type of input data to produce output data. The cQ2.
Discuss about different data types of C programming Language.ompiler is used to translate
source code into machine code or compiled code. This does not yet use any of the input data.

When the compiled code is executed, referred to as 'running the program,' the program
processes the input data to produce the desired output.

When using a compiler, the entire source code needs to be compiled before the program can be
executed. The resulting machine code is typically a compiled file, such as a file with an .exe
extension. Once you have a compiled file, you can run the program over and over again without
having to compile it again. If you have multiple inputs that require processing, you run the
compiled code as many times as needed.

Q2. Discuss about different data types of C programming

Language.

Ans.each variable in C has an associated data type. Each data type requires different

amounts of memory and has some specific operations which can be performed over it.

Let us briefly describe them one by one:

Following are the examples of some very common data types used in C:

 char: The most basic data type in C. It stores a single character and requires a

single byte of memory in almost all compilers.

 int: As the name suggests, an int variable is used to store an integer.

 float: It is used to store decimal numbers (numbers with floating point value) with

single precision.

 double: It is used to store decimal numbers (numbers with floating point value)

with double precision.

Different data types also have different ranges upto which they can store numbers.

These ranges may vary from compiler to compiler. Below is list of ranges along with

the memory requirement and format specifiers on 32 bit gcc compiler.

Data Type

Memory

(bytes)

Range

Format

Specifier

short int

2

-32,768 to 32,767

%hd

unsigned short

int

2

0 to 65,535

%hu

unsigned int

4

0 to 4,294,967,295

%u

int

4

-2,147,483,648 to

2,147,483,647

%d

Data Type

Memory

(bytes)

Range

Format

Specifier

long int

4

-2,147,483,648 to

2,147,483,647

%ld

unsigned long

int

4

0 to 4,294,967,295

%lu

long long int

8

-(2^63) to (2^63)-1

%lld

unsigned long

long int

8

0 to

18,446,744,073,709,551,615

%llu

signed char

1

-128 to 127

%c

unsigned char

1

0 to 255

%c

float

4

%f

double

8

%lf

long double

16

%Lf

We can use the sizeof() operator to check the size of a variable. See the following C

program for the usage of the various data types:

 C

filter_none

edit

play_arrow

http://quiz.geeksforgeeks.org/sizeof-operator-c/

brightness_4

#include <stdio.h>

int main()

{

 int a = 1;

 char b = 'G';

 double c = 3.14;

 printf("Hello World!\n");

 // printing the variables defined

 // above along with their sizes

 printf("Hello! I am a character. My value is %c and

"

 "my size is %lu byte.\n",

 b, sizeof(char));

 // can use sizeof(b) above as well

 printf("Hello! I am an integer. My value is %d and

"

 "my size is %lu bytes.\n",

 a, sizeof(int));

 // can use sizeof(a) above as well

 printf("Hello! I am a double floating point

variable."

 " My value is %lf and my size is %lu

bytes.\n",

 c, sizeof(double));

 // can use sizeof(c) above as well

 printf("Bye! See you soon. :)\n");

 return 0;

}

Output:
Hello World!

Hello! I am a character. My value is G and my size is 1 byte.

Hello! I am an integer. My value is 1 and my size is 4 bytes.

Hello! I am a double floating point variable. My value is 3.140000
and my size i

s 8 bytes.

Bye! See you soon. :)

Quiz on Data Types in C

This article is contributed by Ayush Jaggi. Please write comments if you find anything

incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important C++

Foundation and STL concepts with the C++ Foundation and STL courses at a

student-friendly price and become industry ready.
Q3. Find the output of the following expressions

a) X=20/5*2+30-5 b) Y=30 – (40/10+6) +10 c) Z= 40*2/10-2+10

http://quiz.geeksforgeeks.org/c-language-2/data-types/
https://practice.geeksforgeeks.org/courses/CPP-Foundation?vC=1&utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_CPP_STL
https://practice.geeksforgeeks.org/courses/CPP-Foundation?vC=1&utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_CPP_STL
https://practice.geeksforgeeks.org/courses/cpp-stl?vC=1&utm_source=geeksforgeeks&utm_medium=article&utm_campaign=GFG_Article_Bottom_CPP_STL

Ans.a) x=20/5*2+30-5

X=4*2+30-5

x=8+30-5

x=38-5

x=33

 ans. C) Z= 40*2/10-2+10

Z= 40*0.2-2+10

Z=8-2+10

Z=6+10

Z=16

Q4. Describe the syntax of the following statements

C if...else Statement

In this tutorial, you will learn about if statement (including if...else and

nested if..else) in C programming with the help of examples.

C if Statement

The syntax of the if statement in C programming is:

if (test expression)

{

 // statements to be executed if the test expression is true

}

How if statement works?

The if statement evaluates the test expression inside the parenthesis ().

 If the test expression is evaluated to true, statements inside the body

of if are executed.

 If the test expression is evaluated to false, statements inside the body

of if are not executed.

To learn more about when test expression is evaluated to true (non-zero

value) and false (0), check relational and logical operators.

Example 1: if statement

// Program to display a number if it is negative

#include <stdio.h>

int main() {

 int number;

 printf("Enter an integer: ");

 scanf("%d", &number);

 // true if number is less than 0

 if (number < 0) {

 printf("You entered %d.\n", number);

 }

 printf("The if statement is easy.");

 return 0;

}

Output 1

Enter an integer: -2

You entered -2.

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

The if statement is easy.

When the user enters -2, the test expression number<0 is evaluated to true.

Hence, You entered -2 is displayed on the screen.

Output 2

Enter an integer: 5

The if statement is easy.

When the user enters 5, the test expression number<0 is evaluated to false

and the statement inside the body of if is not executed

C if...else Statement

The if statement may have an optional else block. The syntax of

the if..else statement is:

if (test expression) {

 // statements to be executed if the test expression is true

}

else {

 // statements to be executed if the test expression is false

}

How if...else statement works?

If the test expression is evaluated to true,

 statements inside the body of if are executed.

 statements inside the body of else are skipped from execution.

If the test expression is evaluated to false,

 statements inside the body of else are executed

 statements inside the body of if are skipped from execution.

Example 2: if...else statement

// Check whether an integer is odd or even

#include <stdio.h>

int main() {

 int number;

 printf("Enter an integer: ");

 scanf("%d", &number);

 // True if the remainder is 0

 if (number%2 == 0) {

 printf("%d is an even integer.",number);

 }

 else {

 printf("%d is an odd integer.",number);

 }

 return 0;

}

Output

Enter an integer: 7

7 is an odd integer.

When the user enters 7, the test expression number%2==0 is evaluated to

false. Hence, the statement inside the body of else is executed.

C if...else Ladder

The if...else statement executes two different codes depending upon

whether the test expression is true or false. Sometimes, a choice has to be

made from more than 2 possibilities.

The if...else ladder allows you to check between multiple test expressions

and execute different statements.

Syntax of if...else Ladder

if (test expression1) {

 // statement(s)

}

else if(test expression2) {

 // statement(s)

}

else if (test expression3) {

 // statement(s)

}

.

.

else {

 // statement(s)

}

Example 3: C if...else Ladder

// Program to relate two integers using =, > or < symbol

#include <stdio.h>

int main() {

 int number1, number2;

 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 //checks if the two integers are equal.

 if(number1 == number2) {

 printf("Result: %d = %d",number1,number2);

 }

 //checks if number1 is greater than number2.

 else if (number1 > number2) {

 printf("Result: %d > %d", number1, number2);

 }

 //checks if both test expressions are false

 else {

 printf("Result: %d < %d",number1, number2);

 }

 return 0;

}

Output

Enter two integers: 12

23

Result: 12 < 23

Nested if...else

It is possible to include an if...else statement inside the body of

another if...else statement.

Example 4: Nested if...else

This program given below relates two integers using

either <, > and = similar to the if...else ladder's example. However, we will

use a nested if...else statement to solve this problem.

#include <stdio.h>

int main() {

 int number1, number2;

 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 if (number1 >= number2) {

 if (number1 == number2) {

 printf("Result: %d = %d",number1,number2);

 }

 else {

 printf("Result: %d > %d", number1, number2);

 }

 }

 else {

 printf("Result: %d < %d",number1, number2);

 }

 return 0;

}

If the body of an if...else statement has only one statement, you do not

need to use brackets {}.

For example, this code

if (a > b) {

 print("Hello");

}

print("Hi");

is equivalent to

if (a > b)

 print("Hello");

print("Hi");

C for Loop

In this tutorial, you will learn to create for loop in C programming with the

help of examples.

In programming, a loop is used to repeat a block of code until the specified

condition is met.

C programming has three types of loops:

1. for loop

2. while loop

3. do...while loop

We will learn about for loop in this tutorial. In the next tutorial, we will learn

about while and do...while loop.

for Loop

The syntax of the for loop is:

for (initializationStatement; testExpression; updateStatement)

{

 // statements inside the body of loop

}

How for loop works?

 The initialization statement is executed only once.

 Then, the test expression is evaluated. If the test expression is evaluated to

false, the for loop is terminated.

 However, if the test expression is evaluated to true, statements inside the

body of for loop are executed, and the update expression is updated.

 Again the test expression is evaluated.

This process goes on until the test expression is false. When the test

expression is false, the loop terminates.

To learn more about test expression (when the test expression is evaluated

to true and false), check out relational and logical operators.

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

for loop Flowchart

Example 1: for loop

// Print numbers from 1 to 10

#include <stdio.h>

int main() {

 int i;

 for (i = 1; i < 11; ++i)

 {

 printf("%d ", i);

 }

 return 0;

}

Output

1 2 3 4 5 6 7 8 9 10

1. i is initialized to 1.

2. The test expression i < 11 is evaluated. Since 1 less than 11 is true, the

body of for loop is executed. This will print the 1 (value of i) on the screen.

3. The update statement ++i is executed. Now, the value of i will be 2. Again,

the test expression is evaluated to true, and the body of for loop is

executed. This will print 2 (value of i) on the screen.

4. Again, the update statement ++i is executed and the test expression i <

11 is evaluated. This process goes on until i becomes 11.

5. When i becomes 11, i < 11 will be false, and the for loop terminates.

 C while and do...while Loop

In this tutorial, you will learn to create while and do...while loop in C

programming with the help of examples.

In programming, loops are used to repeat a block of code until a specified

condition is met.

C programming has three types of loops.

1. for loop

2. while loop

3. do...while loop

In the previous tutorial, we learned about for loop. In this tutorial, we will

learn about while and do..while loop.

while loop

The syntax of the while loop is:

while (testExpression)

{

 // statements inside the body of the loop

}

How while loop works?

 The while loop evaluates the test expression inside the parenthesis ().

 If the test expression is true, statements inside the body of while loop are

executed. Then, the test expression is evaluated again.

 The process goes on until the test expression is evaluated to false.

 If the test expression is false, the loop terminates (ends).

To learn more about test expression (when the test expression is evaluated

to true and false), check out relational and logical operators.

nlike for and while loops, which test the loop condition at the top of the loop,
the do...while loop in C programming checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except the fact that it is guaranteed to
execute at least one time.

Syntax

The syntax of a do...while loop in C programming language is −

do {

 statement(s);

} while(condition);

https://www.programiz.com/c-programming/c-operators#relational
https://www.programiz.com/c-programming/c-operators#logical

Notice that the conditional expression appears at the end of the loop, so the
statement(s) in the loop executes once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s)
in the loop executes again. This process repeats until the given condition becomes
false.

Flow Diagram

Example

Live Demo

#include <stdio.h>

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 printf("value of a: %d\n", a);

 a = a + 1;

 }while(a < 20);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of a: 10

http://tpcg.io/pVAh6H

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

