

Natarajan Meghanathan, et al. (Eds): ITCS, SIP, JSE-2012, CS & IT 04, pp. 315–323, 2012.

© CS & IT-CSCP 2012 DOI : 10.5121/csit.2012.2129

Automatic Assessment of Programming

assignment

Surendra Gupta
1
 and Shiv Kumar Dubey

2

Department of Computer Engineering
Shri G. S. Institute of Technology & Science 23, Park Road Indore 452003 (MP)

India
1sgupta@sgsits.ac.in, 2shivmgcgv@gmail.com

ABSTRACT

In today’s world study of computer’s language is more important. Effective and good

programming skills are need full all computer science students. They can be master in

programming, only through intensive exercise practices. Due to day by day increasing number of

students in the class, the assessment of programming exercises leads to extensive workload for

teacher/instructor, particularly if it has to be carried out manually.

In this paper, we propose an automatic assessment system for programming assignments, using

verification program with random inputs. One of the most important properties of a program is

that, it carries out its intended function. The intended function of a program or part of a program

can be verified by using inverse function’s verification program. For checking intended

functionality and evaluation of a program, we have used verification program. This assessment

system has been tested on basic C programming courses, and results shows that it can work well

in basic programming exercises, with some initial promising results.

KEYWORDS

Programming assignment, automatic assessment, verification program, input/output file

1. INTRODUCTION

As stated in ACM Computing Curricula 2001 [1], programming-involved courses are regarded as

the basis of most of the computer science studies. In the other words, possession of good

programming skill is necessary to secure the learning outcomes in this field. In the past and in the

present time also, at many places programming is mostly taught in the traditional face-to-face

basis. When faced with grading hundreds of program manually only the help of teaching

assistants is not so easy. In large class error detection, manual evaluation for every program is

difficult and time consuming. With the recent advancement of the internet technologies and

advanced program analysis techniques, web-based tutoring systems that can play the role of

teacher for teaching and training programming, partially or completely, are increasingly

considered [2]. Automatic assessment of programming assignment is one major task in

programming classes to evaluate and marking students’ programming exercises aided by the

computer. For the mastery of programming skill, solid background in theory and profound

316 Computer Science & Information Technology (CS & IT)

experience in practical exercises are both required [3]. To render learners with a convenient

environment to observe theoretical issues in programming, educational tool like Alice [4] has

tried to employ visual effects and animation to illustrate the programming concepts. In traditional

education, this problem is countered by manual review and inspection offered by class tutors [5].

However, it is not efficiently practical when dealing with large numbers of students and practice

exercises. To automate the inspection process, one popular method suggested is generating a suit

of test cases based on the coverage analysis [6] and executing the programs with all of the test

cases. Even though applied widely in industry, this method is not theoretically complete since test

cases are impossible to secure the absence of possible flaws in programs. In addition, it is not

always encouraged to run a piece of potentially erroneous code due to the system safety. With the

recent advancement of the internet technologies and advanced program analysis techniques, web-

based tutoring systems that can play the role of teacher for training programming, partially or

completely, are increasingly considered. In this paper a system is proposed, which can help and

intended to improve education performance in the course of programming methodologies.

The rest of the paper is organized as follows. Section II, presents some related works in this field.

Section III, presents assignment assessment processing, in which we discuss about verification

program and assessment approach concepts. In next section V, presents our proposed system. The

second last section VI, presents experimental results by the system. Finally, section VII,

concludes the paper with some future directions pointed out.

2. RELATED WORKS

Research in the context of automatic programming assessment has a long history. It has been of

interest to computer science educators started from 1960s and has continued to gain vast attention

till present. Its core aims are mainly to promote an automated tool to reduce the workload of

human teachers, to improve consistency of marking assessment items and to include thorough

testing of students’ programming exercises. The basic requirement for automated assessment of

programming exercises are the measurement values that can be extracted from the program and

the values can be compared to the given requirements or to a model solution. For an educational

purpose, the measurement values typically need to be justified by the teaching goals of the course

or specifically by objectives to be achieved for each topic of the course syllabus. Several

approaches to automatic programming assessment can be found from various resources such as

journals, conference articles and online resources. The approaches typically based on either static

analysis or dynamic testing. This refers to whether a program needs to be executed while it is

being assessed. On top of that, the assessment process can be done by looking into a code

structure (white-box) or simply based on a functional behavior of a program (black-box) [7].

A. Static program analysis: Static program analysis has recently emerged as an efficient means

for program verification. There are two popular approaches arisen in this direction: theorem

proving and model checking. The theorem proving approach, supported by the logic of axiomatic

semantic theory, is sound and complete for correctness verification. However, due to the

computational complexity, this approach fails to produce counter-examples of the errors

encountered, thus limited in terms of education sake. Model checking approach can tackle this

problem, but this method cannot work on a virtually infinite domain hence probably suffering

infinitive execution when processing flaw-free programs [8].

Static analysis doesn’t execute student programs, so it is feasible for programs that cannot be

compiled successfully. Two steps are needed: transformation of student program and model

program into an intermediate representation and analysis after transformation.

Computer Science & Information Technology (CS & IT) 317

Yingli Liang et al [9] describe the transformation of student program into intermediate

representation and analysis after transformation and how the static analysis can help in program

verification. The transformation needs to be done in the following steps: First, an intermediate

representation form should be selected and generated from the source code. A category of general

intermediate representation includes: textual form such as characters and strings, Abstract Syntax

Tree (AST) and graphs such as Control Flow Graph (CFG), Program Dependence Graph (PDG)

and System Dependence Graph (SDG). Second, standardization of intermediate representation

should be done to reduce code diversity. Basic standardization includes temporary declaration

standardization, expression standardization, control structure standardization and so on. The

transformation needs to be done in the following steps: First, an intermediate representation form

should be selected and generated from the source code. A category of general intermediate

representation includes: textual form such as characters and strings, Abstract Syntax Tree (AST)

and graphs such as Control Flow Graph (CFG), Program Dependence Graph (PDG) and System

Dependence Graph (SDG). Second, standardization of intermediate representation should be done

to reduce code diversity. Basic standardization includes temporary declaration standardization,

expression standardization, control structure standardization and so on.

The automated programming assessment using the pseudo-code comparison technique is one of

the techniques suggested in the static analysis approach; which is the non-structural similarity

analysis. This technique suggests that both the students’ source code and the instructors’ source-

code are translated into their respective pseudo-code, before they are compared. The instructors’

source-code will act as the answer scheme. Khirulnizam Abd Rahman at al [10] described an

application which is developed to assess student C programming exercises based on the

pseudocodes. According to author the purpose of developing this application is to find the

percentage of the pseudocode similarity between student’s answer and the instructor’s scheme.

The method used in their software is by translating the students’ programming answer and all the

instructors’ answer schemes into pseudocode. The software will compare the students’

pseudocode with all the pseudocode from the instructors’ answer schemes. The highest

percentage of similarities will be chosen for the mark.

C. A. R. Hoare [11] introduced Hoare logic in his paper. The central feature of Hoare logic is

the Hoare triple. A triple describes how the execution of a piece of code changes the state of the

computation. A Hoare triple is of the form {P} C {Q} where P and Q are assertions and C is

a command. P is named the precondition and Q the postcondition, when the precondition is met,

the command establishes the postcondition. Hoare logic provides axioms and inference rules for

all the constructs of a simple imperative programming language.

B. Dynamic Program Analysis: For manual assessment, it is difficult to figure out the results of

a program because the program may has many different executive paths and output results even it

is simple. Dynamic analysis assesses a program by executing it based on the test data which are

automatically generated or manually provided. In other word dynamic program analysis is the

analysis of computer software that is performed by executing programs built from that software

system on a real or virtual processor. For dynamic program analysis to be effective, the target

program must be executed with sufficient test inputs to produce interesting behavior. Use of

software testing techniques such as code coverage helps ensure that an adequate slice of the

program's set of possible behaviors has been observed. Also, care must be taken to minimize the

effect that instrumentation has on the execution (including temporal properties) of the target

program.

The general dynamic analysis proceeds as followings: first, it is a must that the program be

compiled successfully; second, it is necessary to take as many security threats as possible into

consideration, such as infinite loops, fatal errors during execution as well as malicious codes.

Existed methods to cope with these challenges include scanning the codes before executing the

318 Computer Science & Information Technology (CS & IT)

program, access permission or putting a limit on system resources and so on; third, the complete

test data are required in execution. Test data could be obtained in two ways, manually and

automatically generated by computer; finally the output of the program and information

throughout the process should be collected and analyzed in an appropriate way [12].

3. MATHEMATICAL MODEL

All programs (let a program is P) are generated by the some algorithms (let the algorithms is A),

and all algorithms are represented by function or the group of functions (let the function is F).

And all functions will also have its inverse function (let inverse function is F
-1

), now with this

inverse function F-1, we can write a program (let the program called P-1 which will have the

reverse functioning of program P).

Figure 1. Steps of getting Program P
-1

 from Program P

Here in figure 1, lets P is a Program, A is an Algorithms, F is a function or group of functions for

algorithm A and F-1 is an inverse function, with respect to function F. A-1 is an algorithm for

function F
-1

 and P
-1

 is a program for algorithm A
-1

. So in reverse manner we can write a program

P-1, this program can use to check the functioning of program P. Now if we can make a program

P-1 from program P, which has the inverse functioning of program P, then we can assess and

evaluate the program P.

If any programming problem which is given to student satisfies certain property, then with use of

this we can make an inverse function for that problem. In other word if we can make a reverse

program of a given programming problem from inverse function approach, then we can make a

verification program for that particular problem and with this we can assess the assignment by

this system.

Inverse function

If f maps X to Y, then f–1 maps Y back to X as shown in figure 2.

Figure 2. Inverse Function

Let f be a function whose domain is the set X, and whose range is the set Y. Then f is invertible if

there exists a function g with domain Y and range X, with the property: f(x) =y if and only if

g(y) =x. If f is invertible, the function g is unique; in other words, there can be at most one

function g satisfying this property. That function g is then called the inverse of f, denoted by f−1.

Example

A function is f and its inverse f–1. Because f maps ‘a’ to 3, the inverse f–1 maps 3 back to ‘a’.

Computer Science & Information Technology (CS & IT) 319

Figure 3. Example of Inverse Function

In mathematics, an inverse function is a function that in some sense undoes another function: If

an input x into the function f produces an output y, then putting y into the inverse function g

produces the output x, and vice versa. i.e., f(x) =y, and g(y) =x. More directly, g(f(x)) =x,

meaning g(x) composed with f(x) leaves x unchanged. The inverse function approach is used to

write a verification program for assess given assignment.

4. ASSIGNMENT ASSESSMENT PROCESSING

In our system, we employ the theory of inverse function property satisfy by solution of any

problem, to handle the task of automatic program assessment. Assessment processing mainly

done around following: problem description, student program, verification program.

Problem description

Teacher defines a problem as, (1) a natural description. (2) Verification program for that problem

description. While the natural description is explicitly presented to the student, the verification

program is hidden and only used by the system to assess the submissions, submitted by the

student. For example:

A. Program Description

The problem of finding the quotient Q and remainder R obtain on dividing X by Y. All variables

are assumed to range over a set of nonnegative integers. Lets the student submitted program’s

code part is:

R=X; Q=0;

do { R=R-Y; Q=Q+1; }

while (Y<=R)

Verification Program- An important property of this program is that when it terminates, we can

recover the numerator X by adding to the remainder R the product of the divisor Y and the

quotient Q (i.e. X=R+Y*Q). Furthermore, the remainder is less than the divisor. These properties

may be expressed formally: Y<=R^X+Y*Q. Now teacher write a program which check whether

or not condition is fulfil by program after execution, whether or not it carries out its intended

function. Like if a condition X=R+Y*Q is satisfied after execution of student program then the

program is correct otherwise incorrect.

B. Program Description

Program for find out the inverse of a matrix m

320 Computer Science & Information Technology (CS & IT)

Verification Program

Let the inverse of matrix m given by student program is m-1. Then the property m* m-1 = [I] ([I]

the identity matrix or unit matrix) should satisfy. For checking these above condition, we can

write a verification program.

Now we have the: 1. Student program. 2. Verification program. 3. Input/output of student

program (input for program random generated by system). 4. Now combination of input and

output of student program will be the input for verification program as if figure 4.

Figure 4. Input/output Approach

Consider if we have a specific condition for every specific problem, and if solution given by

student is correct then it should be satisfy these condition.

That’s why if we can write a verification program of any given problem with in inverse properties

satisfied by given programming problem, then we can assess programming assignment through

this approach. Here only need is to find out the specific inverse function of a given problem and

write a verification program, through which we can assess bulk of programs.

5. PROPOSED SYSTEM

Here we are going to propose a system which provides the facilities for teacher to give the

programming assignments to students. In which he can give the programming assignment

description and its verification program and student will submit their assignments. System

verifies the submitted programming exercises according to teacher instruction. This assessment

process can help all computer study centre with respect to programming-involved courses like C

programming language. It will help the teacher to promote the subject and increase the course

performance and also increase the quality of understanding. By this system, students also increase

the interest to study and understanding the concept of the programming subjects.

In this paper, we suggest an approach used verification program technique to automatic

assessment programming assignments, without worry about the execution of program, input and

getting output. Our system for automatic assessment of program exercises is given bellow in

figure 5.

Computer Science & Information Technology (CS & IT) 321

Figure 5. Proposed Assignment Assessment System

There are three actors working in this system: Teacher, Student and System. First, Teacher will

provide programming problems (which are presented descriptive to student) and verification

program. The programming problem will descriptive to student and verification program is

hidden. Later when student visits the system, he can try to solve these problems. The works

submitted by student is then assessed by System. The stochastic information of system, such as

common errors or error of program, number of input, number of time run will store in system’s

database, which can helps teacher to evaluate the performance of the students and whole course.

5. EXPERIMENTAL RESULT

The system is implemented in course of basic programming concept. There were 90 students in

class and each one have to submit assignment of three programming problems. Students assigned

the roll number from 1 to 90 for differentiate among submitted assignments. Teacher gives the

description of assignment and later, student will submit their assignment through mail.

Teacher gives mail to student, in which he gives detail description of assignment. The description

like natural description of problem, due date of submission and some special instruction (like

program name should in specific formant, program should without input scanf(), getch() type

input function and program output format etc) etc. Here is the result of assignment assessment

through system in Table 1.

Table 1 System assessment summary

Number of program run Correct Incorrect Compile error

81 programs run 55% 25% 20%

322 Computer Science & Information Technology (CS & IT)

6. CONCLUSIONS AND FUTURE WORK

This “Automatic assessment system” automatically compiles and runs the students program and

evaluate on the basis of verification program. The system proposed in this paper has been

implemented in a Computer class based on basic programming concepts. There were 90 students

in class and 81 students submitted their assignments. The assessment of the assignment is done by

this system. In this system 81 students assignments evaluated, in which there was 20%

compilation error, 25% incorrect programs and rest of 55% programs is resulting correct as per

result of system. This system gives the result of assessment in less effort and provides all

information regarding programming assessment.

The proposed system has some constraints, like student have to write a program which takes input

only form command line argument and format of output should be in predefined format. In future

these constraints can we remove to make system more user friendly. Till now this system can’t

we say as fully automated, in future by enhancing this system, we can make this, fully online and

automatic which can be use from anywhere through internet.

REFERENCES

[1] The Joint Task Force: Computing Curricula 2001, Computer Science, ACM, 2001.

[2] Tho T. Quan, Phung H. Nguyen, Thang H. Bui, Linh V. Huynh and Anh T. A framework for

automatic verification of programming exercises.

[3] H. Dobler, R. Ramler and K. Wolfmaier. A Study of Tool Support for the Evaluation of Programming

Exercises, Computer Aided Systems Theory – EUROCAST 2007, Springer, 2007.

[4] Carnegie Mellon University. Alice Education Software, available at

http://www.cmu.edu/corporate/news/2007/features/alice.shtml

[5] K.E. Wiegers. Peer Reviews in Software,Addison Wesley, London, UK, 2002.

[6] A. Spillner, T. Linz, H. Schaefer. Software Testing Foundations, dpunkt, 2006.

[7] Rohaida Romli, Shahida Sulaiman, Kamal Zuhairi Zamli, Automatic Programming Assessment and

Test Data Generation-A review on its approaches, 2010 IEEE

[8] Tho T. Quan, Phung H. Nguyen, Thang H. Bui, Linh V. Huynh and Anh T. Do, A Framework For

Automatic Verification Of Programing Exercises. 2009 IEEE

[9] Yingli Liang, Quanbo Liu, Jun Xu, Dongqing Wang, The Recent Development of Automated

Programming Assessment, 2009 IEEE

[10] Khirulnizam Abd Rahman, Md Jan Nordin and Che Wan Shmsul Bahri C. W. A. Automated

Programming Assessment using the Pseudocode Comparison Technique: Does It Really Work? IEEE

2008

[11] C. A. R. Hoare. An axiomatic basis for computer programming Communications of the ACM,

12(10):576–580,583, 1969.

Computer Science & Information Technology (CS & IT) 323

Authors

Surendra Gupta received the Bachelor of Engineering degree in Computer Science and

Engineering from Barktuulha University in 1997 and master of engineering degree in

computer engineering from DAVV University in 2000. He is currently working as

Assistant Professor in SGSITS Indore in Computer Engineering Department. His interests

are in empirical software engineering and software qualities. He is a member of the

computer society of India.

Shiv Kumar Dubey received the bachelor of Technology degree in Information

Technology from Mahatma Gandhi Chitrakoot Gramoday Vishwavidyalaya, Satna,

Madhya Pradesh in 2008 and Master of Engineering degree in computer engineering from

RGPV Bhopal MP in 2011.

