
 CCA-101: Fundamentals of IT & Programming

Assignment - 2

Q1. What is the difference between Machine Language and

High Level Language?

Programs written in the machine language of a given type of

computer can be directly executed by the CPU of that type of

computer. High-level language programs must be translated into

machine language before they can be executed. (Machine language

instructions are encoded as binary numbers that are meant to be

used by a machine, not read or written by people. High-level

languages use a syntax that is closer to human language.)

Q2. Discuss about different data types of C programming

Language.

Ans. Data types in c refer to an extensive system used for declaring variables or

functions of different types. The type of a variable determines how much space it
occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows −

Sr.No. Types & Description

1
Basic Types

They are arithmetic types and are further classified into: (a) integer types and (b)
floating-point types.

2
Enumerated types

They are again arithmetic types and they are used to define variables that can
only assign certain discrete integer values throughout the program.

3
The type void

The type specifier void indicates that no value is available.

4
Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union
types and (e) Function types.

The array types and structure types are referred collectively as the aggregate types.
The type of a function specifies the type of the function's return value. We will see
the basic types in the following section, where as other types will be covered in the
upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their storage
sizes and value ranges −

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes
-32,768 to 32,767 or -2,147,483,648

to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 8 bytes or (4bytes for 32 bit OS) -9223372036854775808 to
9223372036854775807

unsigned long 8 bytes 0 to 18446744073709551615

Floating-Point Types

The following table provide the details of standard floating-point types with storage
sizes and value ranges and their precision −

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The void Type

The void type specifies that no value is available. It is used in three kinds of
situations −

Sr.No. Types & Description

1
Function returns as void

There are various functions in C which do not return any value or you can say
they return void. A function with no return value has the return type as void. For
example, void exit (int status);

2
Function arguments as void

There are various functions in C which do not accept any parameter. A function
with no parameter can accept a void. For example, int rand(void);

3
Pointers to void

A pointer of type void * represents the address of an object, but not its type. For
example, a memory allocation function void *malloc(size_t size); returns a
pointer to void which can be casted to any data type.

Character type
Character types are used to store characters value.

Size and range of Integer type on 16-bit machine

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

Q3. Find the output of the following expressions

a) X=20/5*2+30-5 b) Y=30 – (40/10+6) +10 c) Z= 40*2/10-2+10

ans.

Q4. Describe the syntax of the following statements

a) If – else statement b) for loop c) while loop d) do-while loop

Ans. a) If – else statement

 In the last tutorial we learned how to use if statement in C. In this guide,

we will learn how to use if else, nested if else and else if statements in a C

Program.

C If else statement

Syntax of if else statement:

If condition returns true then the statements inside the body of “if” are

executed and the statements inside body of “else” are skipped.

If condition returns false then the statements inside the body of “if” are

skipped and the statements in “else” are executed.

if(condition) {

// Statements inside body of if

}

else {

//Statements inside body of else

Example of if else statement

In this program user is asked to enter the age and based on the input, the

if..else

statement checks whether the entered age is greater than or equal to 18. If

this

condition meet then display message “You are eligible for voting”, however if

the

condition doesn’t meet then display a different message “You are not eligible

for

voting”.

b) for loop
Ans. What Is a For Loop?

A for loop enables a particular set of conditions to be executed repeatedly until

a condition is

satisfied. Imagine a situation where you would have to print numbers from 1

to 100. What would

you do? Will you type in the printf command a hundred times or try to

copy/paste it? This simple

task would take an eternity. Using a for loop you can perform this action in

three statements. This

is the most basic example of the for loop. It can also be used in many advanced

scenarios

depending on the problem statement.

Check out the flowchart of a for loop to get a better idea of how it looks:

Syntax of a For Loop

c) while loop

Ans. A while loop in C programming repeatedly executes a target statement as

long as a given condition is true.

Syntax

The syntax of a while loop in C programming language

is −

while(condition) {

statement(s);

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any nonzero value. The loop

iterates while the condition is true.

When the condition becomes false, the program control passes to the line

immediately following the loop.

Flow Diagram

Here, the key point to note is that a while loop might not

execute at all. When the

condition is tested and the result is false, the loop body will

be skipped and the first

statement after the while loop will be executed.

Here, the key point to note is that a while loop might not

execute at all. When the

condition is tested and the result is false, the loop body will

be skipped and the first

statement after the while loop will be executed.

Example

When the above code is compiled and executed, it produces

the

following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

d) do-while loop

Ans.

Unlike for and while loops, which test the loop condition at

the top of the loop,

the do...while loop in C programming checks its condition at

the bottom of the loop.

A do...while loop is similar to a while loop, except the fact

that it is guaranteed to execute

at least one time.

Syntax

The syntax of a do...while loop in C programming language is

−

do {

statement(s);

} while(condition);

Notice that the conditional expression appears at the end of

the loop, so the statement(s)

in the loop executes once before the condition is tested.

If the condition is true, the flow of control jumps back up to

do, and the statement(s) in the

loop executes again. This process repeats until the given

condition becomes false.

Example

#include <stdio.h>

int main () {

/* local variable definition */

int a = 10;

/* do loop execution */

do {

printf("value of a: %d\n", a);

a = a + 1;

}while(a < 20);

return 0;

}

When the above code is compiled and executed, it produces

the

following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

