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Some Fundamental Cybersecurity Concepts 
 

 

Abstract—The results of successful hacking attacks against 

commercially-available cybersecurity protection tools that had 

been touted as “secure” are distilled into a set of concepts that 

are applicable to many protection planning scenarios. The 

concepts, which explain why trust in those systems was 

misplaced, provides a framework for both analyzing known 

exploits and also evaluating proposed protection systems for 

predicting likely potential vulnerabilities. The concepts are: (1) 

differentiating security threats into distinct classes; (2) a five 

layer model of computing systems; (3) a payload vs. protection 

paradigm; and (4) the nine Ds of cybersecurity, which present 

practical defensive tactics in an easily remembered scheme. An 

eavesdropping risk, inherent in many smartphones and notebook 

computers, is described to motivate improved practices and 

demonstrate real-world application of the concepts to predicting 

new vulnerabilities. Additionally, the use of the nine Ds is 

demonstrated as analysis tool that permits ranking of the 

expected effectiveness of some potential countermeasures. 

 
Index Terms—Computer hacking, Computer security, Reverse 

engineering, Software protection 

 

 
I. INTRODUCTION 

HE four concepts introduced here enable comparison and 

evaluation of protection systems, including both analyzing 

defeats by known exploits and also predicting likely 

vulnerabilities. In this section we will introduce these concepts 

which will be expanded in the sections that follow. 

These concepts resulted from one of the authors’ 

participation in an early test and evaluation program run by  

the U.S. Department of Defense (DoD) [1]. The DoD engaged 

penetration testers (a.k.a. “white hat hackers”) to attack its 

own computer protection systems and report back the results 

of their attempts, with the intent that such testing would 

expose weaknesses so that protections could be strengthened. 

In the early 2000s, the DoD sought an explanation for how 

both the protection experts and the white hat hackers could 

simultaneously claim victory in the same testing project (i.e., 

the same hacking test). 

The explanation is disturbing due to the potential that the 

situation is spread across the cybersecurity community: the 

protection experts and hackers each defined victory 
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differently. Protection experts defined victory as preventing 

hackers from completing the specific attack vectors against 

which the protections ostensibly defended, whereas hackers 

defined victory as being able to complete at least some serious 

attack vectors that they believed had injured the integrity of 

the computing asset. In the early stages of the testing program, 

the protection experts and the white hat hackers had each been 

focusing on different attack vectors. 

As a result, a significant discovery was made: Each of the 

“protected” computing assets had retained notable 

vulnerabilities, despite being labeled as “protected” by 

experts. Different protection systems left a different set of 

vulnerabilities intact, but all protection systems that were 

available in the commercial marketplace left at least some. 

Although individual experts may have been quite competent in 

addressing a particular set of attack vectors, it was apparent 

that different experts had been concentrating on different sets, 

without coordination to ensure completeness across all 

potential attacks. There was some degree of overlap, but not a 

common set of test vectors against which all experts had been 

evaluating proposed protection systems. 

Upon realization of this situation, and its gravity, the claims 

of victory by the white hat hackers in the early tests were 

analyzed for commonality. This differentiated security threats 

into distinct classes, producing three threat classes that will 

be discussed in the next section: piracy, tampering, and 

reverse engineering [2]. A matching set of protection 

categories was then identified: license enforcement, anti- 

tamper, and anti-reverse engineering. The test planning efforts 

then leveraged this categorization in subsequent test projects 

to analyze various available security products for effectiveness 

against each different threat class. Another significant 

discovery was then made. There was no one-size-fits-all 

protection system available in the commercial 

marketplace. 

This meant that an effective cybersecurity program would 

require additional work. The owner of a computing asset 

would need to ascertain all threat classes against which a 

defense was desirable. Only then could the proper security 

product be selected for use, and in many situations, more than 

a single security product would be needed. This added a 

complicating factor. Not only would each security product 

require evaluation for effectiveness against each threat class 

for which protection was advertised, but each product would 

also require evaluation for compatibility with other products 

that might be used contemporaneously. 

Additionally, it became obvious that a protection system 

that was implemented using only programming techniques 

within application software could be defeated by attack tools 
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that intercepted calls from the software to the operating system 

(OS) and falsified or altered the outgoing or incoming data [3]. 

This type of vulnerability persisted, even if the protection 

system had been designed well enough to provide a solid 

defense against software-based attacks, such as the use of an 

application-layer debugger. The idea of “tunneling under the 

castle wall” – effective in medieval warfare – turned out to be 

similarly effective in cyber warfare. Essentially, a protection 

system could only be reliably effective against attacks that 

occurred at the same system layer in which the protection 

system had been implemented, or attacks at higher layers. 

An easily-understood example of “tunneling under” a 

protection system is the use of virtual machines and other  

tools to perform execution run tracing and data falsification. 

These tools can force many protections to reveal secrets that 

are relied upon for security. Once the secrets are revealed, 

protections that rely upon those secrets for security can be 

defeated. Thus, even if well-designed, protections can be 

vulnerable to attacks from lower layers. A definition of 

computing layers is needed that enables meaningful analysis 

of whether an attack is at the same layer as a protection 

system, beneath it, or above it. 

The common privilege ring model for computer security [4] 

does not reach with sufficient refinement into hardware-based 

protections, and the TCP/IP stack model for networked 

computing systems [5] is not sufficiently tailored to security 

issues to properly model protections and attacks. A new five 

layer model was developed that reaches downward into 

separate hardware layers and upward into software layers. 

To focus risk mitigation efforts against a class of attack that 

includes code lifting, a payload vs. protection paradigm is 

introduced to explain how program functionality can be 

separated from protections. In a code lifting attack, some 

protections are not so much defeated as merely sidestepped. 

Such attacks use a two-phase plan of: 

1. Separating desirable portions of the computing asset 

from at least some of the protections – to produce a 

less-protected version – and then 

2. Attacking the less-protected version [2, 6]. 

This is more feasible when the computing asset is software 

rather than a hardware device, and the protection system is 

software-only. 

Finally, a collection of best practices is proposed as the nine 

Ds of cybersecurity. Although the nine Ds are not a 

comprehensive list, they do include both the three tenets of 

cybersecurity proposed by the DoD [7, 8], as well as lessons- 

learned about implementation flaws introduced by human 

error. The nine Ds are presented in a manner that is designed 

to be easily remembered by security system implementers. 

The concepts here should facilitate categorizing security 

products by the protection offered, rating the products’ 

effectiveness within each threat class, analyzing breaches of 

existing protections, and predicting likely vulnerabilities of 

proposed protection system designs. By iterating analyses of 

proposed designs and addressing predicted vulnerabilities, 

more effective protection system designs can be achieved. 

II. THE THREE SECURITY THREAT CLASSES 

The key to achieving effective protection system design is 

developing a strategy based upon an analysis of relevant 

threats [2, 7, 8]. A good strategy will counter all relevant 

threats ensuring adequate coverage of each threat class, rather 

than merely using whatever technologies that happen to be 

available. The process should begin by ascertaining the entire 

set of threats that are of concern to the owner of a computing 

asset and then analyzing the degree of each threat. Computing 

assets may be hardware or software, including application 

program software, networks and solo computing systems 

intended for either secure site operation or mobility in 

uncontrolled environments. As used here, the term computing 

system refers to a combination of hardware and software that 

is necessary to make use of that hardware. 

A classification system is proposed for the threat classes; 

(1) piracy, (2) tampering, and (3) reverse engineering. 

There are varying degrees of intensity within each threat 

class, due to varying levels of hacker capability and  

computing asset value. The variations in hackers’ capabilities 

are described in the section on the nine Ds. It should be noted 

that there will be differences in specific relevant threats for 

application security versus network security scenarios, 

although the general concepts introduced here are relevant to 

both. See page 38 of [2]. In some situations, certain attacks 

may not be an issue; authors of freely-distributed programs 

may not worry about piracy. 

Fig. 1 provides a representation of a threat environment, 

illustrating attacks against a computing asset from three 

different directions, labeled as piracy, tampering, and reverse 

engineering. These will be discussed in turn. 

Piracy is defined here as unauthorized use; it takes many 

forms. These include distributing an excessive number of 

software copies, moving a copy to an unauthorized location, 

an excessive number of different people using a single copy, 

using a copy beyond a specific date or a specified number of 

trial uses, and using supposedly prohibited features (for 

example, saving data in certain file formats). 

The counter to piracy is license enforcement; examples 

include node-locking and hardware components such as 

dongles that are more difficult to replicate than merely 

copying software. 

The second attack class is tampering: unauthorized 

alteration of a computing asset. There are multiple types of 

unauthorized alteration, including altering functionality or 

capability, introducing malicious logic, and disabling or 

modifying security controls. Examples include computer 

viruses and introduction of “Easter eggs” and “backdoors” 

(a.k.a. “trapdoors”) by malicious software developers [9]. 

Functionality changes can take different forms, such as 

degrading software capability to deprive authorized users of 

proper functionality and increasing capability for improper use 

by others. Introduction of malicious logic can also take 

multiple forms; a virus can migrate to remote sites and a 

programmer can covertly introduce malicious logic during 

development. Developer-inserted malicious logic occurs for 

reasons such as revenge and to facilitate future attacks. 
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Figure 1. Graphical depiction of threat classes and protection categories 

Some common anti-tamper protections against network 

attacks are firewalls and anti-virus products, with firewalls 

providing prospective protection and anti-virus products 

providing remedial protection. Anti-tamper protections for 

application software include secure loaders, integrity checks, 

self-healing that can automatically reverse some hacks, and 

the use of a secure development environment (SDE) to protect 

against malicious or careless programmers. 

The third attack class is reverse engineering, which involves 

learning how a program operates and can be used for stealing 

intellectual property (IP). IP theft can provide a competitive 

advantage if an attacker (a.k.a. “hacker”) can inexpensively 

learn trade secrets that are buried in a program’s functionality. 

This can be an acutely painful economic problem when the 

original developer had spent considerable expense developing 

and refining the ideas implemented in the program. 

Reverse engineering is also often used as a first step in 

defeating protections [10]. A graphical depiction of this is 

given in Fig. 2, illustrating how reverse engineering eases 

tampering, which then permits piracy. Examples of this 

approach include an attacker identifying specific protection 

algorithms used, the location of encryption keys, and the 

memory addresses of critical functionality. Common attack 

methods include profiling behavior, performing run traces, and 

disassembling and decompiling an executable binary file. 

Anti-reverse engineering protections include encrypting the 

executable file and performing code obfuscation, whether of 

the source code, the binary executable, or both. 

Tampering may support reverse engineering when an 

attacker makes targeted alterations to data or an executable file 

and correlates those alterations with observed behavior 

changes. Iterating observations with successively better- 

targeted tampering can permit incremental advances in the 

reverse engineering effort. Thus, anti-tamper and anti-reverse 

engineering protections may be complementary. 

One way to leverage synergy is to design anti-tamper 

protections, such as self-healing, to prevent the disclosure of 

information that permits attackers to learn which alterations 

work toward defeating other protections. Even license 

enforcement can assist with a mutual defense by reducing 

propagation of computing assets, reducing the exposure to 

additional skilled attackers in different locations. 

Unfortunately, many defensive protections are effective in 

only a single threat class or against only some of the attack 

vectors within a single threat class. Some protections, 

however, offer broad protection within a first threat class and a 

lesser degree of protection against a second threat class – 

perhaps effectiveness against only a small set of attack vectors 

within that second threat class. This is because the different 

classes of threats are so disparate that it is unlikely a single 

defensive measure can adequately address all attack vectors 

within all of the threat classes. 

In general, protections should be integrated to the fullest 

extent that is practical. A well-engineered combination can 

produce synergistic results when some of the protections 

enhance the effectiveness of others. Conversely, a poorly- 

engineered combination can undercut effectiveness when a 

failure of one protection measure facilitates attacks against 

another protection measure. 

Well-designed protection systems should defend against all 

relevant attack vectors and may employ multiple protection 

measures to cover multiple threat classes, multiple threats 

within each class, and multiple layers. 

 

III. THE FIVE LAYER MODEL 

It is useful to model computing systems as comprised of 

multiple layers to facilitate analyses. Well-known examples 

are the TCP/IP stack model that currently has variations in 

four, five, and seven layers, and also the four layer privilege 

ring model. A five layer model, illustrated in Fig. 3, is based 

on straightforward groupings of observable attack vectors. 
 

Figure 2. Graphical depiction of an attack on a computing asset. 
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The proposed five layer system is 

1. Application layer/ User Access 

2. OS Interface / System Calls 

3. OS Kernel, OS primary functionality 

4. HW Interface / Firmware / BIOS, boot kernel 

5. Hardware (HW), CPUs, memory, interposers 

In general, protections can be implemented at any layer and 

protections will be needed at each layer. In the Fig. 3 notional 

system, the two top layers have protections. A vulnerability, 

represented as a time bomb, is in a lower layer: the OS kernel. 

This presents an opportunity for an attacker to “tunnel under” 

the protections. 

In some cases, application security might be software-only. 

Even if it had been well-designed and implementation was 

flawless, some vulnerability in the lower layer OS kernel 

could be used to defeat the application layer protections. For 

example, consider the case of an anti-tamper protection that 

performs self-checking and automatic repair of critical data 

and instructions. Such protection can be implemented purely 

within software and will enable an application to check its 

own integrity and make repairs. However, if the OS kernel has 

been compromised, the self-checking might be redirected to a 

different memory location. 

In this scenario, two copies of the application program will 

be loaded into memory. One remains intact while the other 

executes in a tampered state. When the executing copy 

performs a self-check, the flawed OS can redirect the self- 

check mechanism to the intact copy. Alternatively, if the self- 

check uses checksums for integrity determination, the OS can 

place forged checksum values into critical memory locations. 

The self-check protection will operate with an incorrect 

determination, and there will be no repairs. 

The following should govern the use of the model: 

• Even ideal protections with perfect implementation 

can potentially be defeated by lower layer attacks. 

• A vulnerability at one layer can create one above. 

• A vulnerability can negate lower layer protections. 

• Protections should be implemented at each layer. 

• Protections at different layers should be integrated. 

An example of using the five layer model concept is the 

BlackBerry security system. BlackBerry integrates design of 

hardware, OS, and applications on the mobile device itself 

with infrastructure elements and management controls to 

create an integrated security solution [11]. The effectiveness 

of this integrated approach has been at least somewhat 

validated by the US DoD’s action of forcing some of its 

employees to return to BlackBerrys and give up iPhone and 

Android devices [12]. 

Integration of protection systems at different layers might 

provide synergistic effects, similar to those noted for 

protections against different threat classes. Even beyond 

integrating protection systems with each other, there may be a 

further need to integrate protection systems with the actual 

functionality that gives the computing asset its value. 

 

 
Figure 3. Five layer model illustrating a flawed layer 3. 

 

IV. PAYLOAD VS. PROTECTION 

A computing asset may be viewed as a combination of two 

parts: (1) the functionality that gives an asset value (i.e., 

“payload”), and (2) the measures that the asset owner puts in 

place to control its use (i.e., “protection”). The payload is the 

functionality that is available to authorized users and the 

protection is the set of features that ensure both trustworthy 

operation of the functionality and also that the functionality is 

available only to authorized users. The terms “hacking” and 

“cracking” (see p. 37 of [2]) refer to attempts to access 

functionality in violation of the protection. 

An attacker can attempt to access a payload by removing or 

altering protections. This may be easier when a protection is 

“bolt-on” and operates independently from payload logic. 

Some “bolt-on” security products are competently designed 

for both effectiveness and ease-of-use. Unfortunately though, 

if security is easily tacked onto an existing software package, 

it might be just as easily separated as illustrated in Fig. 4. 

One example of an attack that separates payload from 

protection is code lifting [2, 6]. It is a two-phase attack that 

can sidestep at least some protections rather than attempting to 

defeat them outright. First, valuable functionality is copied 

from a binary file that comprises an executable module or a 

critical data set of an ostensibly protected program. Next, this 

functionality is then placed into a shell program that provides 

the proper execution environment. Although creating the shell 

program does require effort, the level of effort may be lower 

than either the effort required for independent development or 

defeating in-place protections. 

Ideally, a comprehensive cybersecurity strategy should be 

implemented from the very beginning of a project so that 

protections can be thoroughly integrated. However, bolt-on 

type security may have cost and schedule advantages. An 

example of a bolt-on protection is an encryption wrapper that 
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operates on an executable program to produce a combination 

product: a secure launcher and an encrypted program that is 

decrypted just in time for execution and is deleted after 

execution completes. For such systems, the protection step 

may have less impact on development because validation of 

the payload functionality can be completed prior to final 

security work. The post-security testing merely needs to 

ensure that the protection system did not damage functionality. 

Attacks against such protections include a memory grab that 

attempts to copy the decrypted executable and store it in an 

executable state. If protections had been put into the 

executable portion of the program, the memory grab or other 

code lifting attack might bring the protections along. 

If the integration is sufficiently thorough, it may be difficult 

for an attacker to distinguish between desirable functionality 

and the protection logic. The attacker may need to purchase a 

copy of the same security product that had been used, and 

apply it to a test program. 

Differential analysis performed on the attacker’s original 

and protected test programs might provide insight into the 

security product’s signature and facilitate later attacks [13]. 

Protections found by this signature exploitation method might 

be defeated simply by jumping over or replacing the 

protection instructions with no-operation commands (NOPs). 

A strategy for preventing the separation of payload and 

protection is to integrate protection measures so thoroughly 

within the payload’s core functional logic that the process of 

separation becomes too difficult. One approach is to weave 

protection and payload logic such that altering protection logic 

will also damage payload logic to the point that the payload 

loses its value to the attacker. Unfortunately, this may be 

impractical; time and budget constraints may dictate a more 

modest plan. Cybersecurity requires a balancing act between 

many factors, and cost is one of them [14]. 

 

Figure 4. Graphical depiction of the payload vs. protection paradigm. 

V. THE NINE DS OF CYBERSECURITY 

Using the nine Ds proposed here can help achieve a decent 

balance. They provide easily-remembered guidelines, and are 

inspired by the DoD’s three tenets of cybersecurity [7, 8], 

which are: 

1. Focus on what is critical; 

2. Move critical access points “out of band;” and 

3. Detect, React, Adapt. 

The DoD proposes that protection systems should have 

characteristics of feasibility, adoptability, and sustainability. 

The focus of protections should be to reduce: 

1. System susceptibilities, 

2. Access to potential system flaws by hostile parties, 

and 

3. Capacity of hostile parties to exploit system flaws. 

History and significance of the nine Ds 

One of the white hat hacking tests mentioned in the 

Introduction section involved a computing asset that had been 

protected by a commercially available security product that 

incorporated patented technology and was the subject of 

multiple peer-reviewed academic articles. The academic work 

“proved” that the underlying protection theory was secure. In 

preparation for the test, something on the order of 100 

engineering hours, using the protection company’s best 

technical experts, were spent tailoring the application of the 

security product to the computing asset.). 

The result? Defeat within a mere seven minutes by one of 

the authors of this article [2]. 

This type of thing was, unfortunately, quite common: 

academic theories failing completely in real-world testing. So, 

in addition to analyzing defeats in order to classify them 

according to attack types, computing system layers, defeated 

versus sidestepped, another analysis was performed: was the 

defeat attributable to an inherent weakness in the underlying 

theory, or was it instead human error in the implementation? 

In the test just mentioned, the defeat of the system was a 

result of human error, rather than the underlying theory. The 

engineers had access to journals and articles, but the body of 

academic work was useless to prevent the protection failure. 

Human error occurs despite the availability of a plethora of 

literature on some topic. It occurs because the engineers and 

technicians implementing a system can individually track only 

a limited number of concepts simultaneously, and 

communication among team members also has limits. 

What was needed to reduce the risk that human error would 

degrade a protection system’s effectiveness was a focus aid – 

something to assist planners and implementers with 

simultaneously tracking more of the relevant concepts  

reliably. An analysis of the human errors led to a valuable 

insight: Most of the errors were a result of violating one of the 

DoD’s three tenets or failing to heed one of the concepts 

introduced here. 

A list of points to remember was compiled and each of the 

memory points was (somewhat contortedly) associated with a 

word that began with a common letter: D. 

The nine Ds proposed here should be easy to remember and 
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thus assist with reducing the occurrence of embarrassing 

human error. 

1. Deter attacks 

An attacker needs three things for a successful attack: 

1. The will to attempt an attack; 

2. The ability to succeed with the attack; and 

3. Access to the system. 

Deterrence measures are those that work to reduce an 

attacker’s will to attempt an attack, such as threats of legal 

action or other punitive measures. Unfortunately, deterrence is 

prone to failure. Protections that work against ability are 

technical protection measures (“TPMs”). Curtailing system 

access can often be accomplished through policies. 

2. Detect attacks 

Detection of malicious activity is necessary if affirmative 

reactions will be part of the defensive strategy. One example  

is a password fail counter that triggers a memory wipe upon 

the counter reaching a threshold value. Another is a “phone 

home” system that reports attacks to a monitoring location. 

Other detection systems might include behavior monitors 

that watch for indications of compromise. For example, an 

excessive amount of data traffic might indicate that a running 

program has been altered to forward data to a remote site. 

3. Drive up difficulty 

Driving up difficulty often involves the use of TPMs to 

make attacks more expensive. Attackers can be defeated by 

driving the level of difficulty beyond their ability to cope. 

Attacker skill can be stratified in five basic levels: 

1. A Script Kiddy can only perform pre-fabricated 

attacks that were prepared by someone else. 

2. A Novice can create new attacks with existing tools. 

3. An Expert can create more capable attack tools, but 

may face resource constraints when operating alone. 

4. Funded Organizations are groups of experts that can 

develop sophisticated attacks based on novel tools. 

5. Nation States can access world-class expertise and are 

effectively free from resource constraints. 

Organized crime groups that steal banking credentials for 

large-scale theft projects are funded organizations. In general, 

no protection system should be considered immune from 

possible defeat by a nation state. 

Three considerations for analyzing difficulty are [7, 8]: 

1. Inherent system weakness; 

2. Attacker (hacker) access to the weakness; and 

3. Attacker (hacker) capability to exploit the weakness. 

Attacker capability is something over which a protection 

specialist has no control. As new attack tools are developed, 

attacker capability will increase over time. This leaves only 

the first two considerations, weakness and access, for driving 

up difficulty. The options are to reduce inherent system 

weakness and restrict availability to reduce attacker access. 

In addition to skill level, it is also possible to classify 

attackers as either rational or irrational. A rational attacker 

performs a cost/benefit analysis and proceeds only if the ratio 

is favorable. Cost is measured not only with currency, but also 

with time and other resource demands. For some computing 

assets, the benefit of a successful attack can be very high. For 

example, if protected IP has national security significance or 

high competitive value, a successful exploit could be worth 

millions of dollars. Benefits can be valued by some attackers 

as more than merely monetary. There may be an element of 

emotion involved, such as ego or a desire for revenge. To 

defeat rational attackers, a protection system need only present 

a sufficient level of difficulty to render the attackers’ 

perceived cost/benefit ratio unfavorable. 

In contrast, an irrational attacker will proceed regardless of 

the perceived cost or benefit. Irrational attackers are unlikely 

to be deterred, and can often be stopped only by 

insurmountable difficulty or insufficient access. Fortunately, 

the more highly-skilled attackers are likely to be rational. 

4. Differentiate protections 

As mentioned in the section titled Three Security Threat 

Classes, protection systems should each be focused on one or 

more specific threats that had already been identified. This 

requires (1) ascertaining each proposed system’s likely 

performance against the identified threats, (2) ensuring that 

interactions among various proposed contemporaneous 

systems do not hinder performance goals, and (3) ensuring  

that there is an acceptable level of expected resilience against 

each threat. 

5. Dig beneath the threat 

As mentioned in the Five Layer Model section, an attack at 

a layer that is lower than a particular protection may be able to 

defeat that protection – even if that protection is perfectly 

implemented. It follows then, that a protection at a lower layer 

than an expected attack may be able to defeat the attack – even 

if that attack is expertly conducted. 

6. Diffuse protection throughout the payload 

As mentioned in the Payload vs. Protection section, 

protections can be integrated throughout a payload’s core 

functional logic to drive up difficulty for code lifting attacks. 

The goal of this D should be to force the attacker into a 

choice: either bring along functioning protections or else 

forfeit the payload value. 

7. Distract with decoys 

Attackers will stop either when they become frustrated or 

when they believe that they have succeeded. Encouraging a 

false belief in success is a valid protection option. 

8. Divert attackers to other targets 

Another effective strategy is to divert attention to a more 

attractive target elsewhere. The well-known adage about not 

needing to outrun a bear, if you can outrun one other person, 

can also apply to cybersecurity. You could “win” merely by 

persuading an attacker to target someone else. 

9. Depth of defense 

The concept of defense in depth is a valuable one for use 

against sophisticated attackers [15]. A real-world, practical 

implementation is that only after an attacker has defeated 
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some protections will other protections manifest themselves. 

The value in this is that the second and higher tier defenses are 

not exposed for study by lower skill attackers who lack the 

resources, will, or access to defeat the first tier defenses. 

One example of this is the use of a secure launcher that 

performs just-in-time decryption of the primary executable 

program that, in addition to being encrypted in its resting state, 

also uses obfuscation and self-healing. In this example, the 

first tier of protection is the encryption of the binary 

executable, which keeps the binary from being edited with a 

hex editor. This first tier of defense is useful against static 

attacks, which are aimed at an executable as it resides on 

permanent media. The secure launcher can be leveraged to 

prevent static attacks and make dynamic attacks  more 

difficult. Dynamic attacks are those that are implemented 

against a running program. 

The use of the secure launcher can offer protection by 

1. Detecting the presence of attack tools on the system, 

2. Decrypting the primary executable only after 

determining the environment to be safe from these 

attack tools, 

3. Monitoring for malicious activity, such as memory 

grab attempts, and 

4. Ensuring that upon completion of execution the 

memory and hard drive swap space are cleared of 

residual data and instructions. 

Obfuscation protection is thus only visible to an attacker 

after the encryption protection has been defeated, for example 

through a memory grab or a run trace. Only then, after the 

obfuscation has been sufficiently defeated to enable an 

attacker to identify critical sections for tampering, will any 

self-healing defenses manifest themselves. Hopefully, the 

encryption and obfuscation will prevent identification of self- 

healing defenses prior to their activation. 

 

VI. DISTURBING CONSIDERATIONS FOR MOBILE TELECOM 

DEVICES: REAL-WORLD APPLICATION OF THE CONCEPTS 

Smartphones can’t always protect not-so-smart users. 

Mobile telecommunications (“telecom”) devices, such as 

smartphones, present some significant security challenges. 

Due to their mobility and small size, they have a high potential 

to be lost or stolen, and thus fall into hostile hands. In such a 

scenario, a mobile telecom device is under the physical control 

of an attacker. The control may be permanent, perhaps for the 

purpose of learning valuable information such as bank account 

numbers or possibly copying sensitive documents. 

Alternatively, the control may be temporary, to surreptitiously 

insert malware and return the device to the unwitting owner, 

who then unknowingly discloses private information at a later 

time. To combat these threats, the devices need to protect 

themselves without assistance, similar to the paradigm for 

application-centric security practices. For some devices, 

though, assistance may be available in the form of a remotely- 

initiated data wipe. 

Additionally, because mobile telecom devices are complex 

computing platforms that operate on public networks, a 

comprehensive security plan must also include network- 

centric security practices. An attacker may attempt to access a 

device remotely, through Trojan horse malware or breaking in 

through a poorly-protected wireless port. 

Combining the factors of high mobility, small form factor 

and computational power, with usage in cellular, WiFi, and 

Bluetooth networks, we see that mobile telecom devices may 

be facing one of the worst possible environments for security 

threats. The emergence of self-assembling ad hoc networks 

will present a new generation of security challenges. 

Comprehensive security programs, based on the concepts 

introduced here, can help to mitigate some of the risks. 

Unfortunately, though, many users happily load spyware 

onto their own devices. They do this with the mistaken belief 

that the harmful programs are merely innocent applications – 

either fun games or valuable utility software [16]. One way to 

address this risk is by limiting software installation to only 

those programs that have been subjected to a security review 

and endorsed with a code signing certificate. 

Also, there is a potentially catastrophic vulnerability that 

currently exists in telecom devices – likely including the one 

that you are using right now. Smartphones and notebook 

computers can be converted into covert eavesdropping and 

tracking devices to spy on their users, even when the users 

believe that the devices have been turned “off” [17]. This can 

occur because (1) the shutdown procedures are logic- 

controlled, and (2) “off” isn’t really “off” in the traditional 

sense that power is no longer being supplied to processing 

circuitry. Even when mobile telecom devices are turned “off” 

by their users, some software-implemented functionality, such 

as alarm clocks and other timers, continues to operate. Thus, 

the device often isn’t truly powered down to a thoroughly non- 

operable state. 

When contemplating that shut-down procedures are 

controlled by logic, a frightening threat scenario emerges: 

Malware might alter logic that controls a shut-down procedure 

so that a device merely appears to be “off” by darkening the 

screen and managing other observable behavior. This altered 

state can deceive the user, even as the device surreptitiously 

continues to operate one or more of the microphone, camera, 

or GPS or other sensor systems. Collected information can 

then be offloaded at a time and in a manner that is likely to 

escape detection by the user. 

Had you already been aware of this risk, or have you been 

exposing yourself to it? 

Note that, despite the plethora of theoretical academic work 

on cybersecurity topics, major threats continue to exist entirely 

unnoticed. However, this threat is easily understood in light of 

the practical concepts introduced here. 

It is also possible to rate the potential effectiveness of 

proposed and available countermeasures using the nine Ds and 

the five layer model. For example, one effective 

countermeasure (apart from the obvious of not having any 

telecom device in the vicinity of a sensitive conversation) is to 

remove the battery. This is a solution in the lowest layer 

(hardware). and “digs beneath the threat” to provide a robust 

solution, as suggested by the nine Ds. Another hardware-based 

solution is to place the mobile device in a box or holster that
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