

 1

T

Some Fundamental Cybersecurity Concepts

Abstract—The results of successful hacking attacks against

commercially-available cybersecurity protection tools that had

been touted as “secure” are distilled into a set of concepts that

are applicable to many protection planning scenarios. The

concepts, which explain why trust in those systems was

misplaced, provides a framework for both analyzing known

exploits and also evaluating proposed protection systems for

predicting likely potential vulnerabilities. The concepts are: (1)

differentiating security threats into distinct classes; (2) a five

layer model of computing systems; (3) a payload vs. protection

paradigm; and (4) the nine Ds of cybersecurity, which present

practical defensive tactics in an easily remembered scheme. An

eavesdropping risk, inherent in many smartphones and notebook

computers, is described to motivate improved practices and

demonstrate real-world application of the concepts to predicting

new vulnerabilities. Additionally, the use of the nine Ds is

demonstrated as analysis tool that permits ranking of the

expected effectiveness of some potential countermeasures.

Index Terms—Computer hacking, Computer security, Reverse

engineering, Software protection

I. INTRODUCTION

HE four concepts introduced here enable comparison and

evaluation of protection systems, including both analyzing

defeats by known exploits and also predicting likely

vulnerabilities. In this section we will introduce these concepts

which will be expanded in the sections that follow.

These concepts resulted from one of the authors’

participation in an early test and evaluation program run by

the U.S. Department of Defense (DoD) [1]. The DoD engaged

penetration testers (a.k.a. “white hat hackers”) to attack its

own computer protection systems and report back the results

of their attempts, with the intent that such testing would

expose weaknesses so that protections could be strengthened.

In the early 2000s, the DoD sought an explanation for how

both the protection experts and the white hat hackers could

simultaneously claim victory in the same testing project (i.e.,

the same hacking test).

The explanation is disturbing due to the potential that the

situation is spread across the cybersecurity community: the

protection experts and hackers each defined victory

This paragraph of the first footnote will contain the date on which you

submitted your paper for review.
Kelce S. Wilson is a patent attorney with BlackBerry, located in Irving,

TX, 75039. (e-mail: kewilson@blackberry.com).

Müge Ayşe Kıy is a government relations manager with BlackBerry,
located in Washington, D.C., 20001. (e-mail: mkiy@blackberry.com).

The opinions expressed herein are those of solely the authors, and do not

necessarily reflect the views of BlackBerry.

differently. Protection experts defined victory as preventing

hackers from completing the specific attack vectors against

which the protections ostensibly defended, whereas hackers

defined victory as being able to complete at least some serious

attack vectors that they believed had injured the integrity of

the computing asset. In the early stages of the testing program,

the protection experts and the white hat hackers had each been

focusing on different attack vectors.

As a result, a significant discovery was made: Each of the

“protected” computing assets had retained notable

vulnerabilities, despite being labeled as “protected” by

experts. Different protection systems left a different set of

vulnerabilities intact, but all protection systems that were

available in the commercial marketplace left at least some.

Although individual experts may have been quite competent in

addressing a particular set of attack vectors, it was apparent

that different experts had been concentrating on different sets,

without coordination to ensure completeness across all

potential attacks. There was some degree of overlap, but not a

common set of test vectors against which all experts had been

evaluating proposed protection systems.

Upon realization of this situation, and its gravity, the claims

of victory by the white hat hackers in the early tests were

analyzed for commonality. This differentiated security threats

into distinct classes, producing three threat classes that will

be discussed in the next section: piracy, tampering, and

reverse engineering [2]. A matching set of protection

categories was then identified: license enforcement, anti-

tamper, and anti-reverse engineering. The test planning efforts

then leveraged this categorization in subsequent test projects

to analyze various available security products for effectiveness

against each different threat class. Another significant

discovery was then made. There was no one-size-fits-all

protection system available in the commercial

marketplace.

This meant that an effective cybersecurity program would

require additional work. The owner of a computing asset

would need to ascertain all threat classes against which a

defense was desirable. Only then could the proper security

product be selected for use, and in many situations, more than

a single security product would be needed. This added a

complicating factor. Not only would each security product

require evaluation for effectiveness against each threat class

for which protection was advertised, but each product would

also require evaluation for compatibility with other products

that might be used contemporaneously.

Additionally, it became obvious that a protection system

that was implemented using only programming techniques

within application software could be defeated by attack tools

 2

that intercepted calls from the software to the operating system

(OS) and falsified or altered the outgoing or incoming data [3].

This type of vulnerability persisted, even if the protection

system had been designed well enough to provide a solid

defense against software-based attacks, such as the use of an

application-layer debugger. The idea of “tunneling under the

castle wall” – effective in medieval warfare – turned out to be

similarly effective in cyber warfare. Essentially, a protection

system could only be reliably effective against attacks that

occurred at the same system layer in which the protection

system had been implemented, or attacks at higher layers.

An easily-understood example of “tunneling under” a

protection system is the use of virtual machines and other

tools to perform execution run tracing and data falsification.

These tools can force many protections to reveal secrets that

are relied upon for security. Once the secrets are revealed,

protections that rely upon those secrets for security can be

defeated. Thus, even if well-designed, protections can be

vulnerable to attacks from lower layers. A definition of

computing layers is needed that enables meaningful analysis

of whether an attack is at the same layer as a protection

system, beneath it, or above it.

The common privilege ring model for computer security [4]

does not reach with sufficient refinement into hardware-based

protections, and the TCP/IP stack model for networked

computing systems [5] is not sufficiently tailored to security

issues to properly model protections and attacks. A new five

layer model was developed that reaches downward into

separate hardware layers and upward into software layers.

To focus risk mitigation efforts against a class of attack that

includes code lifting, a payload vs. protection paradigm is

introduced to explain how program functionality can be

separated from protections. In a code lifting attack, some

protections are not so much defeated as merely sidestepped.

Such attacks use a two-phase plan of:

1. Separating desirable portions of the computing asset

from at least some of the protections – to produce a

less-protected version – and then

2. Attacking the less-protected version [2, 6].

This is more feasible when the computing asset is software

rather than a hardware device, and the protection system is

software-only.

Finally, a collection of best practices is proposed as the nine

Ds of cybersecurity. Although the nine Ds are not a

comprehensive list, they do include both the three tenets of

cybersecurity proposed by the DoD [7, 8], as well as lessons-

learned about implementation flaws introduced by human

error. The nine Ds are presented in a manner that is designed

to be easily remembered by security system implementers.

The concepts here should facilitate categorizing security

products by the protection offered, rating the products’

effectiveness within each threat class, analyzing breaches of

existing protections, and predicting likely vulnerabilities of

proposed protection system designs. By iterating analyses of

proposed designs and addressing predicted vulnerabilities,

more effective protection system designs can be achieved.

II. THE THREE SECURITY THREAT CLASSES

The key to achieving effective protection system design is

developing a strategy based upon an analysis of relevant

threats [2, 7, 8]. A good strategy will counter all relevant

threats ensuring adequate coverage of each threat class, rather

than merely using whatever technologies that happen to be

available. The process should begin by ascertaining the entire

set of threats that are of concern to the owner of a computing

asset and then analyzing the degree of each threat. Computing

assets may be hardware or software, including application

program software, networks and solo computing systems

intended for either secure site operation or mobility in

uncontrolled environments. As used here, the term computing

system refers to a combination of hardware and software that

is necessary to make use of that hardware.

A classification system is proposed for the threat classes;

(1) piracy, (2) tampering, and (3) reverse engineering.

There are varying degrees of intensity within each threat

class, due to varying levels of hacker capability and

computing asset value. The variations in hackers’ capabilities

are described in the section on the nine Ds. It should be noted

that there will be differences in specific relevant threats for

application security versus network security scenarios,

although the general concepts introduced here are relevant to

both. See page 38 of [2]. In some situations, certain attacks

may not be an issue; authors of freely-distributed programs

may not worry about piracy.

Fig. 1 provides a representation of a threat environment,

illustrating attacks against a computing asset from three

different directions, labeled as piracy, tampering, and reverse

engineering. These will be discussed in turn.

Piracy is defined here as unauthorized use; it takes many

forms. These include distributing an excessive number of

software copies, moving a copy to an unauthorized location,

an excessive number of different people using a single copy,

using a copy beyond a specific date or a specified number of

trial uses, and using supposedly prohibited features (for

example, saving data in certain file formats).

The counter to piracy is license enforcement; examples

include node-locking and hardware components such as

dongles that are more difficult to replicate than merely

copying software.

The second attack class is tampering: unauthorized

alteration of a computing asset. There are multiple types of

unauthorized alteration, including altering functionality or

capability, introducing malicious logic, and disabling or

modifying security controls. Examples include computer

viruses and introduction of “Easter eggs” and “backdoors”

(a.k.a. “trapdoors”) by malicious software developers [9].

Functionality changes can take different forms, such as

degrading software capability to deprive authorized users of

proper functionality and increasing capability for improper use

by others. Introduction of malicious logic can also take

multiple forms; a virus can migrate to remote sites and a

programmer can covertly introduce malicious logic during

development. Developer-inserted malicious logic occurs for

reasons such as revenge and to facilitate future attacks.

 3

Figure 1. Graphical depiction of threat classes and protection categories

Some common anti-tamper protections against network

attacks are firewalls and anti-virus products, with firewalls

providing prospective protection and anti-virus products

providing remedial protection. Anti-tamper protections for

application software include secure loaders, integrity checks,

self-healing that can automatically reverse some hacks, and

the use of a secure development environment (SDE) to protect

against malicious or careless programmers.

The third attack class is reverse engineering, which involves

learning how a program operates and can be used for stealing

intellectual property (IP). IP theft can provide a competitive

advantage if an attacker (a.k.a. “hacker”) can inexpensively

learn trade secrets that are buried in a program’s functionality.

This can be an acutely painful economic problem when the

original developer had spent considerable expense developing

and refining the ideas implemented in the program.

Reverse engineering is also often used as a first step in

defeating protections [10]. A graphical depiction of this is

given in Fig. 2, illustrating how reverse engineering eases

tampering, which then permits piracy. Examples of this

approach include an attacker identifying specific protection

algorithms used, the location of encryption keys, and the

memory addresses of critical functionality. Common attack

methods include profiling behavior, performing run traces, and

disassembling and decompiling an executable binary file.

Anti-reverse engineering protections include encrypting the

executable file and performing code obfuscation, whether of

the source code, the binary executable, or both.

Tampering may support reverse engineering when an

attacker makes targeted alterations to data or an executable file

and correlates those alterations with observed behavior

changes. Iterating observations with successively better-

targeted tampering can permit incremental advances in the

reverse engineering effort. Thus, anti-tamper and anti-reverse

engineering protections may be complementary.

One way to leverage synergy is to design anti-tamper

protections, such as self-healing, to prevent the disclosure of

information that permits attackers to learn which alterations

work toward defeating other protections. Even license

enforcement can assist with a mutual defense by reducing

propagation of computing assets, reducing the exposure to

additional skilled attackers in different locations.

Unfortunately, many defensive protections are effective in

only a single threat class or against only some of the attack

vectors within a single threat class. Some protections,

however, offer broad protection within a first threat class and a

lesser degree of protection against a second threat class –

perhaps effectiveness against only a small set of attack vectors

within that second threat class. This is because the different

classes of threats are so disparate that it is unlikely a single

defensive measure can adequately address all attack vectors

within all of the threat classes.

In general, protections should be integrated to the fullest

extent that is practical. A well-engineered combination can

produce synergistic results when some of the protections

enhance the effectiveness of others. Conversely, a poorly-

engineered combination can undercut effectiveness when a

failure of one protection measure facilitates attacks against

another protection measure.

Well-designed protection systems should defend against all

relevant attack vectors and may employ multiple protection

measures to cover multiple threat classes, multiple threats

within each class, and multiple layers.

III. THE FIVE LAYER MODEL

It is useful to model computing systems as comprised of

multiple layers to facilitate analyses. Well-known examples

are the TCP/IP stack model that currently has variations in

four, five, and seven layers, and also the four layer privilege

ring model. A five layer model, illustrated in Fig. 3, is based

on straightforward groupings of observable attack vectors.

Figure 2. Graphical depiction of an attack on a computing asset.

 4

The proposed five layer system is

1. Application layer/ User Access

2. OS Interface / System Calls

3. OS Kernel, OS primary functionality

4. HW Interface / Firmware / BIOS, boot kernel

5. Hardware (HW), CPUs, memory, interposers

In general, protections can be implemented at any layer and

protections will be needed at each layer. In the Fig. 3 notional

system, the two top layers have protections. A vulnerability,

represented as a time bomb, is in a lower layer: the OS kernel.

This presents an opportunity for an attacker to “tunnel under”

the protections.

In some cases, application security might be software-only.

Even if it had been well-designed and implementation was

flawless, some vulnerability in the lower layer OS kernel

could be used to defeat the application layer protections. For

example, consider the case of an anti-tamper protection that

performs self-checking and automatic repair of critical data

and instructions. Such protection can be implemented purely

within software and will enable an application to check its

own integrity and make repairs. However, if the OS kernel has

been compromised, the self-checking might be redirected to a

different memory location.

In this scenario, two copies of the application program will

be loaded into memory. One remains intact while the other

executes in a tampered state. When the executing copy

performs a self-check, the flawed OS can redirect the self-

check mechanism to the intact copy. Alternatively, if the self-

check uses checksums for integrity determination, the OS can

place forged checksum values into critical memory locations.

The self-check protection will operate with an incorrect

determination, and there will be no repairs.

The following should govern the use of the model:

• Even ideal protections with perfect implementation

can potentially be defeated by lower layer attacks.

• A vulnerability at one layer can create one above.

• A vulnerability can negate lower layer protections.

• Protections should be implemented at each layer.

• Protections at different layers should be integrated.

An example of using the five layer model concept is the

BlackBerry security system. BlackBerry integrates design of

hardware, OS, and applications on the mobile device itself

with infrastructure elements and management controls to

create an integrated security solution [11]. The effectiveness

of this integrated approach has been at least somewhat

validated by the US DoD’s action of forcing some of its

employees to return to BlackBerrys and give up iPhone and

Android devices [12].

Integration of protection systems at different layers might

provide synergistic effects, similar to those noted for

protections against different threat classes. Even beyond

integrating protection systems with each other, there may be a

further need to integrate protection systems with the actual

functionality that gives the computing asset its value.

Figure 3. Five layer model illustrating a flawed layer 3.

IV. PAYLOAD VS. PROTECTION

A computing asset may be viewed as a combination of two

parts: (1) the functionality that gives an asset value (i.e.,

“payload”), and (2) the measures that the asset owner puts in

place to control its use (i.e., “protection”). The payload is the

functionality that is available to authorized users and the

protection is the set of features that ensure both trustworthy

operation of the functionality and also that the functionality is

available only to authorized users. The terms “hacking” and

“cracking” (see p. 37 of [2]) refer to attempts to access

functionality in violation of the protection.

An attacker can attempt to access a payload by removing or

altering protections. This may be easier when a protection is

“bolt-on” and operates independently from payload logic.

Some “bolt-on” security products are competently designed

for both effectiveness and ease-of-use. Unfortunately though,

if security is easily tacked onto an existing software package,

it might be just as easily separated as illustrated in Fig. 4.

One example of an attack that separates payload from

protection is code lifting [2, 6]. It is a two-phase attack that

can sidestep at least some protections rather than attempting to

defeat them outright. First, valuable functionality is copied

from a binary file that comprises an executable module or a

critical data set of an ostensibly protected program. Next, this

functionality is then placed into a shell program that provides

the proper execution environment. Although creating the shell

program does require effort, the level of effort may be lower

than either the effort required for independent development or

defeating in-place protections.

Ideally, a comprehensive cybersecurity strategy should be

implemented from the very beginning of a project so that

protections can be thoroughly integrated. However, bolt-on

type security may have cost and schedule advantages. An

example of a bolt-on protection is an encryption wrapper that

 5

operates on an executable program to produce a combination

product: a secure launcher and an encrypted program that is

decrypted just in time for execution and is deleted after

execution completes. For such systems, the protection step

may have less impact on development because validation of

the payload functionality can be completed prior to final

security work. The post-security testing merely needs to

ensure that the protection system did not damage functionality.

Attacks against such protections include a memory grab that

attempts to copy the decrypted executable and store it in an

executable state. If protections had been put into the

executable portion of the program, the memory grab or other

code lifting attack might bring the protections along.

If the integration is sufficiently thorough, it may be difficult

for an attacker to distinguish between desirable functionality

and the protection logic. The attacker may need to purchase a

copy of the same security product that had been used, and

apply it to a test program.

Differential analysis performed on the attacker’s original

and protected test programs might provide insight into the

security product’s signature and facilitate later attacks [13].

Protections found by this signature exploitation method might

be defeated simply by jumping over or replacing the

protection instructions with no-operation commands (NOPs).

A strategy for preventing the separation of payload and

protection is to integrate protection measures so thoroughly

within the payload’s core functional logic that the process of

separation becomes too difficult. One approach is to weave

protection and payload logic such that altering protection logic

will also damage payload logic to the point that the payload

loses its value to the attacker. Unfortunately, this may be

impractical; time and budget constraints may dictate a more

modest plan. Cybersecurity requires a balancing act between

many factors, and cost is one of them [14].

Figure 4. Graphical depiction of the payload vs. protection paradigm.

V. THE NINE DS OF CYBERSECURITY

Using the nine Ds proposed here can help achieve a decent

balance. They provide easily-remembered guidelines, and are

inspired by the DoD’s three tenets of cybersecurity [7, 8],

which are:

1. Focus on what is critical;

2. Move critical access points “out of band;” and

3. Detect, React, Adapt.

The DoD proposes that protection systems should have

characteristics of feasibility, adoptability, and sustainability.

The focus of protections should be to reduce:

1. System susceptibilities,

2. Access to potential system flaws by hostile parties,

and

3. Capacity of hostile parties to exploit system flaws.

History and significance of the nine Ds

One of the white hat hacking tests mentioned in the

Introduction section involved a computing asset that had been

protected by a commercially available security product that

incorporated patented technology and was the subject of

multiple peer-reviewed academic articles. The academic work

“proved” that the underlying protection theory was secure. In

preparation for the test, something on the order of 100

engineering hours, using the protection company’s best

technical experts, were spent tailoring the application of the

security product to the computing asset.).

The result? Defeat within a mere seven minutes by one of

the authors of this article [2].

This type of thing was, unfortunately, quite common:

academic theories failing completely in real-world testing. So,

in addition to analyzing defeats in order to classify them

according to attack types, computing system layers, defeated

versus sidestepped, another analysis was performed: was the

defeat attributable to an inherent weakness in the underlying

theory, or was it instead human error in the implementation?

In the test just mentioned, the defeat of the system was a

result of human error, rather than the underlying theory. The

engineers had access to journals and articles, but the body of

academic work was useless to prevent the protection failure.

Human error occurs despite the availability of a plethora of

literature on some topic. It occurs because the engineers and

technicians implementing a system can individually track only

a limited number of concepts simultaneously, and

communication among team members also has limits.

What was needed to reduce the risk that human error would

degrade a protection system’s effectiveness was a focus aid –

something to assist planners and implementers with

simultaneously tracking more of the relevant concepts

reliably. An analysis of the human errors led to a valuable

insight: Most of the errors were a result of violating one of the

DoD’s three tenets or failing to heed one of the concepts

introduced here.

A list of points to remember was compiled and each of the

memory points was (somewhat contortedly) associated with a

word that began with a common letter: D.

The nine Ds proposed here should be easy to remember and

 6

thus assist with reducing the occurrence of embarrassing

human error.

1. Deter attacks

An attacker needs three things for a successful attack:

1. The will to attempt an attack;

2. The ability to succeed with the attack; and

3. Access to the system.

Deterrence measures are those that work to reduce an

attacker’s will to attempt an attack, such as threats of legal

action or other punitive measures. Unfortunately, deterrence is

prone to failure. Protections that work against ability are

technical protection measures (“TPMs”). Curtailing system

access can often be accomplished through policies.

2. Detect attacks

Detection of malicious activity is necessary if affirmative

reactions will be part of the defensive strategy. One example

is a password fail counter that triggers a memory wipe upon

the counter reaching a threshold value. Another is a “phone

home” system that reports attacks to a monitoring location.

Other detection systems might include behavior monitors

that watch for indications of compromise. For example, an

excessive amount of data traffic might indicate that a running

program has been altered to forward data to a remote site.

3. Drive up difficulty

Driving up difficulty often involves the use of TPMs to

make attacks more expensive. Attackers can be defeated by

driving the level of difficulty beyond their ability to cope.

Attacker skill can be stratified in five basic levels:

1. A Script Kiddy can only perform pre-fabricated

attacks that were prepared by someone else.

2. A Novice can create new attacks with existing tools.

3. An Expert can create more capable attack tools, but

may face resource constraints when operating alone.

4. Funded Organizations are groups of experts that can

develop sophisticated attacks based on novel tools.

5. Nation States can access world-class expertise and are

effectively free from resource constraints.

Organized crime groups that steal banking credentials for

large-scale theft projects are funded organizations. In general,

no protection system should be considered immune from

possible defeat by a nation state.

Three considerations for analyzing difficulty are [7, 8]:

1. Inherent system weakness;

2. Attacker (hacker) access to the weakness; and

3. Attacker (hacker) capability to exploit the weakness.

Attacker capability is something over which a protection

specialist has no control. As new attack tools are developed,

attacker capability will increase over time. This leaves only

the first two considerations, weakness and access, for driving

up difficulty. The options are to reduce inherent system

weakness and restrict availability to reduce attacker access.

In addition to skill level, it is also possible to classify

attackers as either rational or irrational. A rational attacker

performs a cost/benefit analysis and proceeds only if the ratio

is favorable. Cost is measured not only with currency, but also

with time and other resource demands. For some computing

assets, the benefit of a successful attack can be very high. For

example, if protected IP has national security significance or

high competitive value, a successful exploit could be worth

millions of dollars. Benefits can be valued by some attackers

as more than merely monetary. There may be an element of

emotion involved, such as ego or a desire for revenge. To

defeat rational attackers, a protection system need only present

a sufficient level of difficulty to render the attackers’

perceived cost/benefit ratio unfavorable.

In contrast, an irrational attacker will proceed regardless of

the perceived cost or benefit. Irrational attackers are unlikely

to be deterred, and can often be stopped only by

insurmountable difficulty or insufficient access. Fortunately,

the more highly-skilled attackers are likely to be rational.

4. Differentiate protections

As mentioned in the section titled Three Security Threat

Classes, protection systems should each be focused on one or

more specific threats that had already been identified. This

requires (1) ascertaining each proposed system’s likely

performance against the identified threats, (2) ensuring that

interactions among various proposed contemporaneous

systems do not hinder performance goals, and (3) ensuring

that there is an acceptable level of expected resilience against

each threat.

5. Dig beneath the threat

As mentioned in the Five Layer Model section, an attack at

a layer that is lower than a particular protection may be able to

defeat that protection – even if that protection is perfectly

implemented. It follows then, that a protection at a lower layer

than an expected attack may be able to defeat the attack – even

if that attack is expertly conducted.

6. Diffuse protection throughout the payload

As mentioned in the Payload vs. Protection section,

protections can be integrated throughout a payload’s core

functional logic to drive up difficulty for code lifting attacks.

The goal of this D should be to force the attacker into a

choice: either bring along functioning protections or else

forfeit the payload value.

7. Distract with decoys

Attackers will stop either when they become frustrated or

when they believe that they have succeeded. Encouraging a

false belief in success is a valid protection option.

8. Divert attackers to other targets

Another effective strategy is to divert attention to a more

attractive target elsewhere. The well-known adage about not

needing to outrun a bear, if you can outrun one other person,

can also apply to cybersecurity. You could “win” merely by

persuading an attacker to target someone else.

9. Depth of defense

The concept of defense in depth is a valuable one for use

against sophisticated attackers [15]. A real-world, practical

implementation is that only after an attacker has defeated

 7

some protections will other protections manifest themselves.

The value in this is that the second and higher tier defenses are

not exposed for study by lower skill attackers who lack the

resources, will, or access to defeat the first tier defenses.

One example of this is the use of a secure launcher that

performs just-in-time decryption of the primary executable

program that, in addition to being encrypted in its resting state,

also uses obfuscation and self-healing. In this example, the

first tier of protection is the encryption of the binary

executable, which keeps the binary from being edited with a

hex editor. This first tier of defense is useful against static

attacks, which are aimed at an executable as it resides on

permanent media. The secure launcher can be leveraged to

prevent static attacks and make dynamic attacks more

difficult. Dynamic attacks are those that are implemented

against a running program.

The use of the secure launcher can offer protection by

1. Detecting the presence of attack tools on the system,

2. Decrypting the primary executable only after

determining the environment to be safe from these

attack tools,

3. Monitoring for malicious activity, such as memory

grab attempts, and

4. Ensuring that upon completion of execution the

memory and hard drive swap space are cleared of

residual data and instructions.

Obfuscation protection is thus only visible to an attacker

after the encryption protection has been defeated, for example

through a memory grab or a run trace. Only then, after the

obfuscation has been sufficiently defeated to enable an

attacker to identify critical sections for tampering, will any

self-healing defenses manifest themselves. Hopefully, the

encryption and obfuscation will prevent identification of self-

healing defenses prior to their activation.

VI. DISTURBING CONSIDERATIONS FOR MOBILE TELECOM

DEVICES: REAL-WORLD APPLICATION OF THE CONCEPTS

Smartphones can’t always protect not-so-smart users.

Mobile telecommunications (“telecom”) devices, such as

smartphones, present some significant security challenges.

Due to their mobility and small size, they have a high potential

to be lost or stolen, and thus fall into hostile hands. In such a

scenario, a mobile telecom device is under the physical control

of an attacker. The control may be permanent, perhaps for the

purpose of learning valuable information such as bank account

numbers or possibly copying sensitive documents.

Alternatively, the control may be temporary, to surreptitiously

insert malware and return the device to the unwitting owner,

who then unknowingly discloses private information at a later

time. To combat these threats, the devices need to protect

themselves without assistance, similar to the paradigm for

application-centric security practices. For some devices,

though, assistance may be available in the form of a remotely-

initiated data wipe.

Additionally, because mobile telecom devices are complex

computing platforms that operate on public networks, a

comprehensive security plan must also include network-

centric security practices. An attacker may attempt to access a

device remotely, through Trojan horse malware or breaking in

through a poorly-protected wireless port.

Combining the factors of high mobility, small form factor

and computational power, with usage in cellular, WiFi, and

Bluetooth networks, we see that mobile telecom devices may

be facing one of the worst possible environments for security

threats. The emergence of self-assembling ad hoc networks

will present a new generation of security challenges.

Comprehensive security programs, based on the concepts

introduced here, can help to mitigate some of the risks.

Unfortunately, though, many users happily load spyware

onto their own devices. They do this with the mistaken belief

that the harmful programs are merely innocent applications –

either fun games or valuable utility software [16]. One way to

address this risk is by limiting software installation to only

those programs that have been subjected to a security review

and endorsed with a code signing certificate.

Also, there is a potentially catastrophic vulnerability that

currently exists in telecom devices – likely including the one

that you are using right now. Smartphones and notebook

computers can be converted into covert eavesdropping and

tracking devices to spy on their users, even when the users

believe that the devices have been turned “off” [17]. This can

occur because (1) the shutdown procedures are logic-

controlled, and (2) “off” isn’t really “off” in the traditional

sense that power is no longer being supplied to processing

circuitry. Even when mobile telecom devices are turned “off”

by their users, some software-implemented functionality, such

as alarm clocks and other timers, continues to operate. Thus,

the device often isn’t truly powered down to a thoroughly non-

operable state.

When contemplating that shut-down procedures are

controlled by logic, a frightening threat scenario emerges:

Malware might alter logic that controls a shut-down procedure

so that a device merely appears to be “off” by darkening the

screen and managing other observable behavior. This altered

state can deceive the user, even as the device surreptitiously

continues to operate one or more of the microphone, camera,

or GPS or other sensor systems. Collected information can

then be offloaded at a time and in a manner that is likely to

escape detection by the user.

Had you already been aware of this risk, or have you been

exposing yourself to it?

Note that, despite the plethora of theoretical academic work

on cybersecurity topics, major threats continue to exist entirely

unnoticed. However, this threat is easily understood in light of

the practical concepts introduced here.

It is also possible to rate the potential effectiveness of

proposed and available countermeasures using the nine Ds and

the five layer model. For example, one effective

countermeasure (apart from the obvious of not having any

telecom device in the vicinity of a sensitive conversation) is to

remove the battery. This is a solution in the lowest layer

(hardware). and “digs beneath the threat” to provide a robust

solution, as suggested by the nine Ds. Another hardware-based

solution is to place the mobile device in a box or holster that

 8

