

YOUR CHOICE REGARDING COOKIES ON THIS SITE

We use cookies to optimize site functionality and give you the best possible experience. Learn More

PRIVACY POLICY

I CONSENT

Transport Layer Protocols

- 10 13. In class, we discussed two different examples of Transport Layer protocols in the Internet protocol stack, namely TCP and UDP.
 - (a) (2 marks) What do the acronyms "UDP" and "TCP" stand for?

UDP: User Datagram Protocol

TCP: Transmission Control Protocol

- (b) (2 marks) Give two examples of similarities between TCP and UDP.
 - both are transport-layer protocols
 - both use 16-bit port numbers in headers for TL multiplexing
 - both use 16-bit Internet checksum in headers for error detection
 - both allow variable size segments (up to 64 KB)
- (c) (3 marks) Give three distinct examples of differences between TCP and UDP.
 - TCP is connection-oriented (stateful); UDP is connection-less (stateless)
 - TCP uses 3-way handshake for connection setup; UDP does not
 - TCP does flow control; UDP does not
 - TCP does congestion control; UDP does not
 - TCP has sequence numbers and ACKs; UDP does not
 - TCP does timeouts and retransmissions; UDP does not
- (c) (3 marks) Give three specific examples of state variables within a TCP Control Block (i.e., Connection State Record) that would not be present in the case of UDP, and indicate what each of these state variables is used for.
 - sequence number: numerical value associated outgoing data being sent
 - expected: numerical value associated with incoming data being received
 - send window: flow control window size for sender
 - receive window: flow control window size for receiver
 - RTT: Round Trip Time estimate
 - RTO: Retransmission TimeOut value used when a segment is lost
 - cwnd: congestion window for dynamic congestion control
 - ssthresh: slow start threshold for TCP congestion control algorithm

*** THE END ***