
UNIT IV Introduction to Programming

 Programming Language

A programming language is a vocabulary and set of grammatical rules for instructing a
computer or computing device to perform specific tasks. The term programming language
usually refers to high-level languages, such as C, C++, COBOL, Java, FORTRAN, A dak and
Pascal.

Machine Language: A computer programming language consisting of binary instructions which
a computer can respond to directly.

Sometimes it is referred to as machine code or object code, machine language is a collection of
binary digits or bits that the computer reads and interprets. A computer cannot directly
understand the programming languages used to create computer programs, so the program code
must be compiled. Example: 01001000, 01100101, 01101100, 01101100 etc

Advantage:

 This language makes fast and efficient use of the computer.

 It requires no translator to translate the code. It is directly understood by the computer.

Disadvantage:

 All memory addresses have to be remembered.

 All operation codes have to be remembered.

Assembly language:

An assembly language is a low-level programming language in which there is a very strong
correspondence between the program's statements and the architecture's machine code
instructions. Assembly code is converted into executable machine code by a utility program
referred to as an assembler.

A program written in assembly language consists of a series of mnemonic processor instructions
and meta-statements (known variously as directives, pseudo-instructions and pseudo-ops),
comments and data. Assembly language instructions usually consist of an opcode mnemonic
followed by a list of data, arguments or parameters. These are translated by
an assembler into machine language instructions that can be loaded into memory and executed.

 Example: MOV AL 61h ;(Meaning – Load AL with 61 hex, MOV is abbreviation of Move)

Advantages Of Assembly Language

1. Programs written in machine language are replaceable by mnemonics which are easier to
remember.

2. Memory Efficient.

3. It is not required to keep track of memory locations.

https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Assembly_language_assembler
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Mnemonic

4. Faster in speed.

5. Easy to make insertions and deletions.

6. Hardware Oriented.

7. Requires fewer instructions to accomplish the same result.

Disadvantages Of Assembly Language

1. Long programs written in such languages cannot be executed on small sized computers.

2. It takes lot of time to code or write the program, as it is more complex in nature.

3. Difficult to remember the syntax.

4. Lack of portability of program between computers of different makes.

High - level language: A high-level language is any programming language that enables
development of a program in a much more user-friendly programming context.

This language is a programming language with strong abstraction about the details of
the computer in contrast to low-level programming language (Assembly Language).

Ex: C, C++, Java

High level languages are grouped in two categories based on execution model – compiled or
interpreted languages. Compiler and interpreter are used to convert the high level language into
machine level language. The program written in high level language is known as source program
and the corresponding machine level language program is called as object program. Both
compiler and interpreter perform the same task but there working is different. Compiler read the
program at-a-time and searches the error and lists them. If the program is error free then it is
converted into object program. When program size is large then compiler is preferred. Whereas
interpreter read only one line of the source code and convert it to object code.

Advantages of High level language

1. High level languages are programmer friendly. They are easy to write, debug and
maintain.

2. It provide higher level of abstraction from machine languages.

3. It is machine independent language.

4. Easy to learn.

5. Less error prone, easy to find and debug errors.

6. High level programming results in better programming productivity.

Disadvantages of High level language

1. It takes additional translation times to translate the source to machine code.

2. High level programs are comparatively slower than low level programs.

3. Compared to low level programs, they are generally less memory efficient.

4. Cannot communicate directly with the hardware.

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Programming_language

 DATA TYPES

Basic concepts – data types

Let's discuss about a very simple but very important concept available in almost all the
programming languages which is called data types. As its name indicates, a data type
represents a type of the data which you can process using your computer program. It can be
numeric, alphanumeric, decimal, etc.

Let’s keep Computer Programming aside for a while and take an easy example of adding two
whole numbers 10 & 20, which can be done simply as follows –

100 + 200

Let's take another problem where we want to add two decimal numbers 100.50 & 200.50, which
will be written as follows –

100.50 + 200.50

The two examples are straight forward. Now let's take another example where we want to
record student information in a notebook. Here we would like to record the information like
Name, Class, Section: A and Age

Now, let's put one student record as per the given requirement −

Name: Ram Kumar

Class: 12th

Section: A

Age: 25

The first example dealt with whole numbers, the second example added two decimal numbers,
whereas the third example is dealing with a mix of different data. Let's put it as follows −

 Student name "Ram Kumar" is a sequence of characters which is also called a string.

 Student class "12th" has been represented by a mix of whole number and a string of two
characters. Such a mix is called alphanumeric.

 Student section has been represented by a single character which is 'A'.

 Student age has been represented by a whole number which is 25.

This way, we realized that in our day-to-day life, we deal with different types of data such as
strings, characters, whole numbers (integers), and decimal numbers (floating point numbers).

Similarly, when we write a computer program to process different types of data, we need to
specify its type clearly; otherwise the computer does not understand how different operations
can be performed on that given data.

Different programming languages use different keywords to specify different data types. For
example, C and Java programming languages use int to specify integer data,
whereas char specifies a character data type.

C and Java Data Types

C and Java support almost the same set of data types, though Java supports additional data
types. For now, we are taking a few common data types supported by both the
programming languages −

Type Keyword Value range which can be represented by this data type

Character char -128 to 127 or 0 to 255

Number int -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

Small Number short -32,768 to 32,767

Long Number long -2,147,483,648 to 2,147,483,647

Decimal Number float 1.2E-38 to 3.4E+38 till 6 decimal places

These data types are called primitive data types and you can use these data types to build more
complex data types, which are called user-defined data type, for example a string will be a
sequence of characters.

Python Data Types

Python has five standard data types but this programming language does not make use of any
keyword to specify a particular data type, rather Python is intelligent enough to understand a
given data type automatically, like - number, string etc. Here, Number specifies all types of
numbers including decimal numbers and string represents a sequence of characters with a length
of 1 or more characters.

Data types Representation in programming

Variables are the names you give to computer memory locations which are used to store values
in a computer program.

For example, assume you want to store two values 10 and 20 in your program and at a later
stage, you want to use these two values. Let's see how you will do it. Here are the following
three simple steps −

 Create variables with appropriate names.

 Store your values in those two variables.

 Retrieve and use the stored values from the variables.

1. Creating variables

Creating variables is also called declaring variables in C programming. Different programming
languages have different ways of creating variables inside a program. For example, C
programming has the following simple way of creating variables −

#include <stdio.h>

int main() {

 int a;

 int b;

}

The above program creates two variables to reserve two memory locations with names a and b.
We created these variables using int keyword to specify variable data type which means we
want to store integer values in these two variables. Similarly, you can create variables to
store long, float, char or any other data type.

You can create variables of similar type by putting them in a single line but separated by comma
as int a, b;

Important key points about variables

 A variable name can hold a single type of value. For example, if variable a has been
defined int type, then it can store only integer.

 C programming language requires a variable creation, i.e., declaration before its usage in
your program. You cannot use a variable name in your program without creating it,
though programming language like Python allows you to use a variable name without
creating it.

 You can use a variable name only once inside your program. For example, if a
variable a has been defined to store an integer value, then you cannot define a again to
store any other type of value.

 There are programming languages like Python, PHP, Perl, etc., which do not want you to
specify data type at the time of creating variables. So you can store integer, float, or long
without specifying their data type.

Every programming language provides more rules related to variables and you will learn them
when you will go in further detail of that programming language.

2. Store Values in Variables

You have seen how we created variables in the previous section. Now, let's store some values in
those variables − Following is a C program, which stored values in variables

#include <stdio.h>

int main() {

 int a;

 int b;

 a = 10;

 b = 20;

}

The above program has two additional statements where we are storing 10 in variable a and 20
is being stored in variable b.

Almost all the programming languages have similar way of storing values in variable where we
keep variable name in the left hand side of an equal sign = and whatever value we want to store
in the variable, we keep that value in the right hand side.

3. Access stored values in variables

If we do not use the stored values in the variables, then there is no point in creating variables
and storing values in them. We know that the above program has two variables a and b and they
store the values 10 and 20, respectively. So let's try to print the values stored in these two
variables. Following is a C program, which prints the values stored in its variables −

#include <stdio.h>

int main() {

 int a;

 int b;

 a = 10;

 b = 20;

 printf("Value of a = %d\n", a);

 printf("Value of b = %d\n", b);

}

When the above program is executed, it produces the following result −

Value of a = 10

Value of b = 20

In this program, printf() function is used to display the message or value of the variable or both
on computer screen, use of %d, which will be replaced with the values of the given variable in
printf() statements.

Equivalent program written in Python

a = 10

b = 20

print "Value of a = ", a

print "Value of b = ", b

When the above program is executed, it produces the following result −

Value of a = 10

Value of b = 20

 OPERATORS

An operator in a programming language is a symbol that tells the compiler or interpreter to
perform specific mathematical, relational or logical operation and produce final result. In this
section you will learn the concept of important arithmetic and relational operators available in
C.

Arithmetic Operators

Important arithmetic operators are available in C programming language. Assume variable A
holds 10 and variable B holds 20, then −

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiplies both operands A * B will give 200

/ Divides numerator by de-numerator B / A will give 2

% This gives remainder of an integer division B % A will give 0

You can understand the use of above arithmetic operators with following C program.

#include <stdio.h>
int main() {

 int a, b, c;
 a = 10;
 b = 20;

 c = a + b;
 printf("Value of c = %d\n", c);

 c = a - b;
 printf("Value of c = %d\n", c);

 c = a * b;
 printf("Value of c = %d\n", c);

 c = b / a;
 printf("Value of c = %d\n", c);

 c = b % a;
 printf("Value of c = %d\n", c);
}

When the above program is executed, it produces the following result −

 Value of c = 30
 Value of c = -10
 Value of c = 200
 Value of c = 2
 Value of c = 0

Relational Operators

Consider a situation where we create two variables and assign them some values as follows −

A = 20

B = 10

Here, it is obvious that variable A is greater than B in values. So, we need the help of some
symbols to write such expressions which are called relational expressions. If we use C
programming language, then it will be written as follows −

(A > B)

Here, we used a symbol > and it is called a relational operator.

Relational operators available in C programming language. In below table assume A=10 and
B=20 then -.

Operator Description Example

== Checks if the values of two operands are equal
or not, if yes then condition becomes true.

(A == B) is not true.

!= Checks if the values of two operands are equal
or not, if values are not equal then condition
becomes true.

(A != B) is true.

> Checks if the value of left operand is greater
than the value of right operand, if yes then
condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less than
the value of right operand, if yes then condition
becomes true.

(A < B) is true.

>= Checks if the value of left operand is greater
than or equal to the value of right operand, if yes
then condition becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

(A <= B) is true.

You can understand the use of above operators in C programming using following program.

#include <stdio.h>
int main() {
 int a, b;

 a = 10;
 b = 20;

 /* Here we check whether a is equal to 10 or not */
 if(a == 10) {

 /* if a is equal to 10 then this body will be executed */
 printf("a is equal to 10\n");
 }

 /* Here we check whether b is equal to 10 or not */
 if(b == 10) {

 /* if b is equal to 10 then this body will be executed */
 printf("b is equal to 10\n");
 }

 /* Here we check if a is less b than or not */
 if(a < b) {

 /* if a is less than b then this body will be executed */
 printf("a is less than b\n");
 }

 /* Here we check whether a and b are not equal */
 if(a != b) {

 /* if a is not equal to b then this body will be executed */
 printf("a is not equal to b\n");
 }
}

When the above program is executed, it produces the following result −

a is equal to 10

a is less than b

a is not equal to b

Logical Operators

Logical operators are very important in any programming language and they help us take
decisions based on certain conditions. Suppose we want to combine the result of two conditions,
then logical AND and OR logical operators help us in producing the final result.

The following table shows all the logical operators supported by the C language. Assume
variable A holds 1 and variable B holds 0, then −

Operator Description Example

&& Called Logical AND operator. If both the operands are
non-zero, then condition becomes true.

(A && B) is
false.

|| Called Logical OR Operator. If any of the two operands is
non-zero, then condition becomes true.

(A || B) is
true.

! Called Logical NOT Operator. Use to reverses the logical
state of its operand. If a condition is true then Logical NOT
operator will make false.

!(A && B)
is true.

You can understand use of all the logical operators available in C using following program

#include <stdio.h>

int main() {

 int a = 1;

 int b = 0;

 if (a && b) {

 printf("This will never print because condition is false\n");

 }

 if (a || b) {

 printf("This will be printed print because condition is true\n");

 }

 if (!(a && b)) {

 printf("This will be printed print because condition is true\n");

 }

}

When you compile and execute the above program, it produces the following result −

This will be printed print because condition is true

This will be printed print because condition is true

 CONTROL STATEMENTS

Control Statements: C provides two sytles of flow control:

 Branching

 Looping

Branching is deciding what actions to take and looping is deciding how many times to take a
certain action.

Branching:Branching is so called because the program chooses to follow one branch or another.

if Statement : This is the most simple form of the branching statements.

It takes an expression in parenthesis and an statement or block of statements. if the
expression is true then the statement or block of statements gets executed otherwise these
statements are skipped.

Syntax of If Statement

if (expression)
 statement;
or
if (expression)
 {
 Block of statements;
 }

Almost all the programming languages provide this statement that work based on the following
flow diagram −

IF … else satatement: if statement can be followed by an optional else statement, which
executes when the Boolean expression is false. The syntax of an if...else statement in C
programming language is −

if (expression)
 {
 Block of statements;
 }
else
 {
 Block of statements;
 }

The above syntax can be represented in the form of a flow diagram as shown below −

You can understand the concept of conditional statements in C programming with following
program.

 For example, Find the largest of two numbers, if the numbers are a=30 and b=50

#include <stdio.h>

int main() {

 int a = 30, b=50;

 if(a > b) {

 printf("Largest number is %d\n”, a);

 } else {

 printf("Largest number is %d\n”, b);

 }

}

When the above program is executed, it produces the following result −

 Largest number is 50

 LOOPING

A loop statement allows us to execute a statement or group of statements multiple times. Given
below is the general form of a loop statement in most of the programming languages −

C provides a number of looping way.

while loop
The most basic loop in C is the while loop. A while statement is like a repeating if statement. Like
an If statement, if the test condition is true: the statements get executed. The difference is that
after the statements have been executed, the test condition is checked again. If it is still true the
statements get executed again. This cycle repeats until the test condition evaluates to false.
Basic syntax of while loop is as follows:

while (expression)
{
 Single statement
 or
 Block of statements;
}

The above code can be represented in the form of a flow diagram as shown below −

for loop
for loop is similar to while, it's just written differently. for statements are often used to proccess
lists such a range of numbers:
Basic syntax of for loop is as follows:

for(expression1; expression2; expression3)
{
 Single statement
 or
 Block of statements;
}

In the above syntax:
 expression1 - Initializes variables.
 expression2 - Conditional expression, as long as this condition is true, loop will keep

executing.
 expression3 - expression3 is the modifier which may be simple increment of a variable.

do...while loop
do ... while is just like a while loop except that the test condition is checked at the end of the loop
rather than the start. This has the effect that the content of the loop are always executed at least
once.
Basic syntax of do...while loop is as follows:

do
{
 Single statement
 or
 Block of statements;
}while(expression);

The above code can be represented in the form of a flow diagram as shown below −

You can understand the concept of the various loops by execution of the following C
programming

Using for loop Using while loop Using do…while loop

#include <stdio.h>

int main()
{
 int i;
 for (i=0; i<5; i++)
 {
 printf("Hello %d\n", i);
 }
 }

#include <stdio.h>

int main()
{
 int i = 0;
 while (i < 5) {
 printf("Hello %d\n", i);
 i = i + 1;
 }
 }

#include <stdio.h>
int main()
{
 int i = 0;
 do{
 printf("Hello %d\n",i);
 i = i + 1;
 }
 while (i < 5);
}

Output
Hello 0
Hello 1
Hello 2
Hello 3
Hello 4

Output
Hello 0
Hello 1
Hello 2
Hello 3
Hello 4

Output
Hello 0
Hello 1
Hello 2
Hello 3
Hello 4

The break statement

When the break statement is encountered inside a loop, the loop is immediately terminated and

the program control resumes at the next statement following the loop. The syntax for

a break statement in C is as follows −

break;

The continue statement

The continue statement in C programming language works somewhat like the break statement.

Instead of forcing termination, continue forces the next iteration of the loop to take place,

skipping any code in between. The syntax for a continue statement in C is as follows −

continue;

You can understand the concept of the break and continue statements by execution of the
following programs in C programming.

 Break statement Continue statement

#include <stdio.h>
int main() {
 int i = 0;
 do {
 printf("Hello %d\n", i);
 i = i + 1;

 if(i == 2) {
 break;
 }
 }
 while (i < 5);
}

#include <stdio.h>
int main() {
 int i = 0;
 do {
 if(i == 2) {
 i = i + 1;
 continue;
 }
 printf("Hello %d\n", i);
 i = i + 1;
 }
 while (i < 5);
}

When the above program is executed, it

produces the following result −

 Hello 0
 Hello 1

When the above program is executed, it

produces the following result −

Hello 0
Hello 1
Hello 3
Hello 4

	Programming Language
	Advantages Of Assembly Language
	Disadvantages Of Assembly Language
	Advantages of High level language
	Disadvantages of High level language

	DATA TYPES
	C and Java Data Types
	Python Data Types
	1. Creating variables
	2. Store Values in Variables
	3. Access stored values in variables

	OPERATORS
	Arithmetic Operators
	Relational Operators
	Logical Operators

	CONTROL STATEMENTS
	Branching:Branching is so called because the program chooses to follow one branch or another.
	if Statement : This is the most simple form of the branching statements.

	LOOPING
	A loop statement allows us to execute a statement or group of statements multiple times. Given below is the general form of a loop statement in most of the programming languages −
	
	while loop
	
	for loop
	do...while loop
	

	You can understand the concept of the various loops by execution of the following C programming
	Using for loop
	Using while loop
	Using do…while loop
	Output
	Hello 0
	Hello 1
	Hello 2
	Hello 3
	Hello 4
	Output
	Hello 0
	Hello 1
	Hello 2
	Hello 3
	Hello 4
	Output
	Hello 0
	Hello 1
	Hello 2
	Hello 3
	Hello 4
	The break statement
	The continue statement

	You can understand the concept of the break and continue statements by execution of the following programs in C programming.

