
Certificate in Computer Applications (CCA)

CCA-101: Fundamentals of IT & Programming

ASSIGNMENT – 2

Q.1. What is the difference between Machine Language and High-Level

Language?

Ans. MACHINE LANGUAGE –

Machine language, or machine code, is a low-level language comprised

of binary digits (ones and zeros). High-level languages, such

as Swift and C++ must be compiled into machine language before the

code is run on a computer. Since computers are digital devices, they only

recognize binary data. In computer programming, machine code,

consisting of machine language instructions, is a low-level programming

language used to directly control a computer's central processing unit

(CPU). Each instruction causes the CPU to perform a very specific task,

such as a load, a store, a jump, or an arithmetic logic unit (ALU) operation

on one or more units of data in the CPU's registers or memory.

A much more human friendly rendition of machine language, called

assembly language, uses mnemonic codes to refer to machine code

instructions, rather than using the instructions' numeric values directly,

and uses symbolic names to refer to storage locations and sometimes

registers. For example, on the Zilog Z80 processor, the machine code

00000101, which causes the CPU to decrement the B processor register,

would be represented in assembly language as DEC B..

HIGH LEVEL LANGUAGE –

In computer science, a high-level programming language is a

programming language with strong abstraction from the details of the

computer. In contrast to low-level programming languages, it may use

natural language elements, be easier to use, or may automate (or even

hide entirely) significant areas of computing systems (e.g. memory

management), making the process of developing a program simpler and

more understandable than when using a lower-level language. The

amount of abstraction provided defines how "high-level" a programming

language is.

In the 1960s, high-level programming languages using a compiler were

commonly called autocodes.[2] Examples of autocodes are COBOL and

Fortran.[3]A high-level language is a programming language designed to

simplify computer programming. It is "high-level" since it is several steps

removed from the actual code run on a computer's processor. High-

level source code contains easy-to-read syntax that is later converted into

a low-level language, which can be recognized and run by a specific CPU.

High-level language computer architecture[edit]

Alternatively, it is possible for a high-level language to be directly

implemented by a computer – the computer directly executes the HLL

code. This is known as a high-level language computer architecture – the

computer architecture itself is designed to be targeted by a specific high-

level language. The Burroughs large systems were target machines for

ALGOL 60, for example.

Most common programming languages are considered high-level

languages. Examples include:

C++, C#, Cobol, Fortran, Java, JavaScript, Objective C, Pascal, Perl,

PHP, Python, Swift.

Q.2. Discuss about different data types of C programming Language.

Ans. Data types in C Language –

Data types specify how we enter data into our programs and what type of

data we enter. C language has some predefined set of data types to

handle various kinds of data that we can use in our program. These

datatypes have different storage capacities.

C language supports 2 different type of data types:

1. Primary data types:

These are fundamental data types in C namely integer(int), floating

point(float), character(char) and void.

2. Derived data types:

Derived data types are nothing but primary datatypes but a little

twisted or grouped together like array, structure, union and

pointer. These are discussed in details later. Data type determines

the type of data a variable will hold. If a variable x is declared as int.

it means x can hold only integer values. Every variable which is used

in the program must be declared as what data-type it is.

Integer Type –

Integers are used to store whole numbers.

Size and range of Integer type on 16-bit machine:

Type Size(bytes) Range

int or signed int 2 -32,768 to 32767

unsigned int 2 0 to 65535

short int or signed short int 1 -128 to 127

unsigned short int 1 0 to 255

long int or signed long int 4 -2,147,483,648 to

2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating Point Type –

Floating types are used to store real numbers.

Size and range of Integer type on 16-bit Machine -

Type Size(bytes) Range

Float 4 3.4E-38 to 3.4E+38

double 8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

Character Type –

Character types are used to store characters value.

Size and range of Integer type on 16-bit Machine -

Type Size(bytes) Range

char or signed char 1 -128 to 127

unsigned char 1 0 to 255

VOID TYPE –

Void type means no value. This is usually used to specify the type of

functions which returns nothing. We will get acquainted to this datatype

as we start learning more advanced topics in C language, like functions,

pointers etc.

Q.3. Find the output of the following expressions –

a) X=20/5*2+30-5

b) Y=30 – (40/10+6) +10

c) Z= 40*2/10-2+10

Ans. a) 𝒙 =
𝟐𝟎

𝟓
× 𝟐 + 𝟑𝟎 − 𝟓

 Solution – 𝒙 = 𝟑𝟑

 b) 𝒚 = 𝟑𝟎 − (
𝟒𝟎

𝟏𝟎
+ 𝟔) + 𝟏𝟎

 Solution – 𝒚 = 𝟑𝟎

 c) 𝒛 = 𝟒𝟎 ×
𝟐

𝟏𝟎
− 𝟐 + 𝟏𝟎

 Solution – 𝒛 = 𝟏𝟔

Q.4. Describe the syntax of the following statements:

a) If – else statement

b) for loop

c) while loop

d) do-while loop

Ans. a) If – else Statement –

An if statement can be followed by an optional else if...else statement,

which is very useful to test various conditions using single if...else if

statement.

When using if...else if…else statements, there are few points to keep in

mind −

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the else.

• Once an else if succeeds, none of the remaining else if's or else's will be

tested.

Syntax –

The syntax of an if...else if...else statement in C programming language

is−

 If (boolean_expression 1) {

 /* Executes when the boolean expression 1 is true */

 } else if(boolean_expression 2) {

 /* Executes when the boolean expression 2 is true */

 } else if(boolean_expression 3) {

 /* Executes when the boolean expression 3 is true */

 } else {

 /* executes when the none of the above condition is true */

 }

Example –

 #include <stdio.h>

 int main () {

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if(a == 10) {

 /* if condition is true then print the following */

 printf("Value of a is 10\n");

 } else if(a == 20) {

 /* if else if condition is true */

 printf("Value of a is 20\n");

 } else if(a == 30) {

 /* if else if condition is true */

 printf("Value of a is 30\n");

 } else {

 /* if none of the conditions is true */

 printf("None of the values is matching\n");

 }

 printf("Exact value of a is: %d\n", a);

 return 0;

 }

b) for Loop –

syntax

 for (initializationStatement; testExpression; updateStatement)

 {

 // statements inside the body of loop

 }

Example 1: for loop

 // Print numbers from 1 to 10

 #include <stdio.h>

 int main() {

 int i;

 for (i = 1; i < 11; ++i)

 {

 printf("%d ", i);

 }

 return 0;

 }

C) While Loop –

Syntax –

while (testExpression)

{

 // statements inside the body of the loop

}

Example 1: while loop

// Print numbers from 1 to 5

#include <stdio.h>

int main()

{

int i = 1;

while (i <= 5)

 {

 printf("%d\n", i);

 ++i;

 }

 return 0;

}

d) do-while loop -

Syntax –

do {

 statement(s);

} while (condition);

Example

import std.stdio;

int main () {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do{

 writefln("value of a: %d", a);

 a = a + 1;

 }while(a < 20);

 return 0;

}

 Q.5. Find the output of the following program segments.

Ans –

 a) b) c)

#include <stdio.h>
int main()
{
int i;
for (i=1; i<2; i++)
{
printf("IMS
Ghaziabad\n");
}
}

#include <stdio.h>
int main()
{
int i = 1;
while (i <= 2)
{
printf("IMS
Ghaziabad\n");
i = i + 1;
}
}

#include <stdio.h>
void main()
{
int a = 10, b=100;
if(a > b)
printf("Largest number is
%d\n”, a);
else
printf("Largest number is
%d\n”, b);
}

Output –
IMS Ghaziabad
IMS Ghaziabad

Output –
IMS Ghaziabad
IMS Ghaziabad

Output –
Largest number is 100

