
<Confidential>

Page 1 of 25

Web Service Security Audit Report:

Pan Demat Link Service

Report Release Date 20-06-2024

Type of Audit Application Security

Type of Audit Report Initial Audit Report

Period 14-06-2024 to 20-06-2024

Report Prepared By:

AKS Information Technology Services Pvt. Ltd.

www.aksitservices.co.in

E-Mail: info@aksitservices.co.in

<Confidential>

Page 2 of 25

NON-DISCLOSURE STATEMENT

This report is the sole property of NSDL. All information obtained during the assessment is
deemed privileged information and not for public dissemination. AKS Information
Technology Services Pvt. Ltd. pledges its commitment that this information will remain
strictly confidential. It will not be discussed or disclosed to any third party without the express
written consent of NSDL. except required by the government regulator (Cert-In) or by the
order of the Court.

<Confidential>

Page 3 of 25

Document Control

Document Preparation

Document Title Web Service Security Audit Report Ver 1.0 Pan
Demat Link Service

Document ID -

Document Version 1.0

Prepared by Ms. Vibhuti Bhatt

Reviewed by Mr. Vinayak Kshirasagar

Approved by Ms. Pallavi Roy

Released by Ms. Vibhuti Bhatt

Release date 20-06-2024

Document Change History

Version Date Remarks / Reason of
change

1.0 20-06-2024 Initial release

Document Distribution List

Name Organization Designation Email Id

Durgesh Varma NSDL Assistant Manager durgeshv@nsdl.com

Tejashree Thakare NSDL
Assistant Manager-

IT Security tejashreet@nsdl.com

<Confidential>

Page 4 of 25

Table of Contents
Table of Contents .. 4

Introduction ... 5

Engagement Scope ... 6

Details of the Auditing team .. 7

Audit Activities and Timelines .. 8

Tools/ Software Used ... 9

Executive Summary .. 10

Detailed Findings .. 11

Appendix ‘A’ .. 16

Appendix ‘B’ .. 20

Appendix ‘C’ .. 25

<Confidential>

Page 5 of 25

Introduction

Objectives:

The key objective of this Web Application Security Audit was to identify whether any
vulnerabilities exist in the Web Application and to exploit those that can be seen and
compromised by malicious users. Additionally, the objective of this activity was to ensure the
security of the network and web server from external threats through the Web Application.

Methodology & Standard:

Security Consultants at AKS IT Services Pvt. Ltd. Used the OWASP Web Application Security
Testing Methodology for conducting the security audit of the in-scope Web Application.

The OWASP Web Application Methodology is based on the ‘grey box’ approach. The testing
model consists of the following phases:

Standard:

The Open Worldwide Application Security Project (OWASP) standard was used for conducting
the final level security audit of the Pan Demat Link Service web application. The assessment
was aimed at identifying the vulnerabilities that are defined in the OWASP, SANS, Common
Weakness Enumeration, and other common global best practices.

Appendix A: Details of the OWASP Top 10:2023 Standard

Appendix B: SANS TOP 25 Most Dangerous Software Errors

Initial
Scoping

Access
Information

Authentication
Credentials

Information
Gathering

Enumeration

Workflow &
Business Logic

Vulnerability
Assessment

Manual Audit

Automated
Scanning

Risk
Assessment

Impact
Analysis

Risk Rating

Report
Generation

Detailed
Reporting

POC &
Remediations

<Confidential>

Page 6 of 25

Engagement Scope

S.
No

Asset
Descrip

tion

Criticality
of Asset

Internal
IP

Address
URL

Public
IP

Addre
ss

Location
Hash Value of

final audit
report

Version

1

NA NA NA

https:// eservices-
test.nsdl.com/pandematlink
service/PanDematLinkServi

ce

NA Remote NA NA

<Confidential>

Page 7 of 25

Details of the Auditing team

S.
No Name Designation Email Id

Professional
Qualifications/
Certifications

Whether the
resource has
been listed in
the Snapshot
information
published on

CERT-In’s
website

(Yes/No)

1 Vibhuti Bhatt
Infosec

Consultant-L1

vibhuti.bhatt@a
ksitservices.co.i

n
CEH Yes

2
Vinayak
Kshirasagar

Team Lead –
Application
Security

vinayak.kshirasa
gar@aksitservice

s.co.in

CEH , CAP ,
eWPTX Yes

3 Pallavi Roy

Assistant
Manager –
Application
Security

pallavi.roy@aksit
services.co.in

CEH, ISO 27001
LA, ISO 27701

PIMS LI
Yes

<Confidential>

Page 8 of 25

Audit Activities and Timelines

Audit Activity Timelines
Phase I
Auditor Assigned 16-01-2024
Audit Initiated 14-06-2024
Audit Report Preparation 20-06-2024
Initial Audit Report Published 20-06-2024

<Confidential>

Page 9 of 25

Tools/ Software Used

S. No Name of Tool/Software used
Version of the

tool/Software used
Open Source/Licensed

1 Burp Suite Professional 2023.10 Commercial
2 Soap UI 5.2.1 11.1.0 Commercial

Appendix C: Description of the tools

<Confidential>

Executive Summary

02 00 00 02

Total High Medium Low

S.
No

Affected Asset i.e.
IP/URL/Application etc.

Observation/
Vulnerability

title

CVE/
CWE

Severity Recommendation Reference

New or
Repeat or
closed
observation

1 https://eservices-
test.nsdl.com/pandematlinkservice/P
anDematLinkService

Lack of
security
headers

CWE-
644

Low

Implement security headers such as X-
XSS-Protection, Content-Security-Policy,
Referrer Policy, X-Content-Type-
Options, Permission Policy, Strict-
Transport-Security Header (HSTS) and
X-Frame-Options.

Case I New

2 https://eservices-
test.nsdl.com/pandematlinkservice/P
anDematLinkService

Improper
Input
Validation

CWE-
20

Low

All only the required characters for all
the parameters as per requirement by
whitelisting of those fields with not
allowing all special and meta characters.
Data type validators available natively
in web application frameworks (such as
Django Validators, Apache Commons
Validators etc.). Minimum and
maximum value range check for
numerical parameters and dates,
minimum and maximum length check
for strings. Array of allowed values for
small sets of string parameters (e.g.,
days of week).

Case II New

<Confidential>

Page 11 of 25

Detailed Findings

Case I

i. Affected Asset i.e. IP/URL/Application etc.

https://eservices-test.nsdl.com/pandematlinkservice/PanDematLinkService

ii. Observation/ Vulnerability title

Lack of security Headers

iii. Detailed observation / Vulnerable point

Applications can unintentionally leak information about their configuration,
internal workings, or violate privacy through a variety of application problems.
Attackers use this weakness to steal sensitive data or conduct more serious
attacks.

iv. CVE/CWE

644

v. Control Objective #

NA

vi. Control Name #

NA

vii. Audit Requirement #

NA

viii. Severity

Low

ix. Recommendation

Implement security headers such as X-XSS-Protection, Content-Security-
Policy, Referrer Policy, X-Content-Type-Options, Permission Policy and Strict-
transport-layer-protection.

<Confidential>

Page 12 of 25

x. Reference

Case I

xi. New or Repeat observation

New

xii. References to evidence / Proof of Concept

Step I: Run the api and capture it on proxy tool. Change the method to “GET” and
see the 200 OK response. Observe that security headers are not implemented here.

<Confidential>

Page 13 of 25

Case II

i. Affected Asset i.e. IP/URL/Application etc.

 https:// eservices-test.nsdl.com/pandematlinkservice/PanDematLinkService

ii. Observation/ Vulnerability title

Improper Input Validation

iii. Detailed observation / Vulnerable point

It is observed that the application does not validates user inputs, this can
affect the control flow or data flow of a program.

iv. CVE/CWE

CWE-20

v. Control Objective #

NA

vi. Control Name #

NA

vii. Audit Requirement #

NA

viii. Severity

Low

ix. Recommendation

All only the required characters for all the parameters as per requirement by
whitelisting of those fields with not allowing all special and meta characters.
Data type validators available natively in web application frameworks (such as
Django Validators, Apache Commons Validators etc.). Minimum and maximum
value range check for numerical parameters and dates, minimum and
maximum length check for strings. Array of allowed values for small sets of
string parameters (e.g., days of week).

x. Reference

Case II

xi. New or Repeat observation

<Confidential>

Page 14 of 25

New

xii. References to evidence / Proof of concept

Step I: Enter malicious javascript code in url encoded format and run the
api.Observe that the application accepts as given screenshot below.

Case II: Observe that the data is Base64 encoded .Enter malicious javascript code
in and send the request. Observe that application accepts the data and we receive a
200 OK response.

<Confidential>

Page 15 of 25

Observations

Case I: Base 64 is used for encoding

Step I: It was observed that password is encoded with base 64 which can be easily
decoded using online tools as shown in the given screenshots below.

Mitigations

Implement SHA-256 algorithm to transfer sensitive data.

<Confidential>

Page 16 of 25

Appendix ‘A’

OWASP TOP 10 API Security: 2023

The Open Web Application Security Project (OWASP) is a non-profit foundation dedicated to

improving the security of software. OWASP API Security Top 10 is an online document on

OWASP’s website that provides ranking of and remediation guidance for the top 10 most

critical web service / API security risks. It represents a broad consensus about what are the

most critical API security flaws. The risks are ranked and based on the frequency of

discovered security defects, the severity of the vulnerabilities, and the magnitude of their

potential impacts. The purpose of the report is to offer developers and security professionals

insight into the most prevalent security risks so that they may incorporate the report’s

findings and recommendations into their security practices, thereby minimizing the presence

of these known risks in their web service / API.

The following table summarizes the OWASP API Security Top 10 2023 Most Critical Web

Service / API Security Vulnerabilities:

S. No. Vulnerability & Description Impact

API1:
2023

Broken Object Level
Authorization

APIs tend to expose endpoints that
handle object identifiers, creating a
wide attack surface Level Access
Control issue. Object level
authorization checks should be
considered in every function that
accesses a data source using an input
from the user.

Unauthorized access can result in
data disclosure to unauthorized
parties, data loss, or data
manipulation. Unauthorized access to
objects can also lead to full account
takeover.

API2:
2023

Broken Authentication

Authentication mechanisms are often
implemented incorrectly, allowing
attackers to compromise
authentication tokens or to exploit
implementation flaws to assume
other user’s identities temporarily or
permanently. Compromising a
system’s ability to identify the

Attackers can gain control to other
users’ accounts in the system, read
their personal data, and perform
sensitive actions on their behalf, like
money transactions and sending
personal messages.

<Confidential>

Page 17 of 25

client/user, compromises API security
overall.

API3:
2023

Broken Object Property Level
Authorization

Looking forward to generic
implementations, developers tend to
expose all object properties without
considering their individual
sensitivity, relying on clients to
perform the data filtering before
displaying it to the user.

And binding client provided data
(e.g., JSON) to data models, without
proper properties filtering based on
an allow list, usually leads to Mass
Assignment. Either guessing objects
properties, exploring other API
endpoints, reading the
documentation, or providing
additional object properties in request
payloads, allows attackers to modify
object properties they are not
supposed to.

Excessive Data Exposure commonly
leads to exposure of sensitive data.

Exploitation may lead to privilege
escalation, data tampering, bypass of
security mechanisms, and more.

API4:
2023

Unrestricted Resource
Consumption

It's common to find APIs that do not
limit client interactions or resource
consumption. Crafted API requests,
such as those including parameters
that control the number of resources
to be returned and performing
response status/time/length analysis
should allow identification of the
issue. The same is valid for batched
operations. Although threat agents
don't have visibility over costs
impact, this can be inferred based on
service providers’ (e.g. cloud
provider) business/pricing mode

Exploitation can lead to DoS due to
resource starvation, but it can also
lead to operational costs increase
such as those related to the
infrastructure due to higher CPU
demand, increasing cloud storage
needs, etc.

API5:
2023

Broken Function Level
Authorization

Such flaws allow attackers to access

<Confidential>

Page 18 of 25

Complex access control policies with
different hierarchies, groups, and
roles, and an unclear separation
between administrative and regular
functions, tend to lead to
authorization flaws. By exploiting
these issues, attackers gain access to
other users’ resources and/or
administrative functions.

unauthorized functionality.
Administrative functions are key
targets for this type of attack.

API6:
2023

Unrestricted Access to Sensitive
Business Flows

Lack of a holistic view of the API in
order to fully support business
requirements tends to contribute to
the prevalence of this issue. Attackers
manually identify what resources
(e.g. endpoints) are involved in the
target workflow and how they work
together. If mitigation mechanisms
are already in place, attackers need
to find a way to bypass them.

It might prevent legitimate users
from purchasing a product, or lead to
inflation in the internal economy of a
game.

API7:
2023

 Server-Side Request Forgery
(SSRF)

Lack of or improper validation of such
URIs are common issues. Regular API
requests and response analysis will
be required to detect the issue. When
the response is not returned (Blind
SSRF) detecting the vulnerability
requires more effort and creativity.

Successful exploitation might lead to
internal services enumeration (e.g.
port scanning), information
disclosure, bypassing firewalls, or
other security mechanisms. In some
cases, it can lead to DoS or the
server being used as a proxy to hide
malicious activities.

API8:
2023

Security Misconfiguration

Security misconfiguration is
commonly a result of unsecure
default configurations, incomplete or
ad-hoc configurations, open cloud
storage, misconfigured HTTP headers,
unnecessary HTTP methods,
permissive Cross-Origin resource
sharing (CORS), and verbose error

Security misconfigurations can not
only expose sensitive user data, but
also system details that may lead to
full server compromise.

<Confidential>

Page 19 of 25

messages containing sensitive
information.

API9:
2023

Improper Inventory Management

APIs tend to expose more endpoints
than traditional web applications,
making proper and updated
documentation highly important.
Proper hosts and deployed API
versions inventory also play an
important role to mitigate issues such
as deprecated API versions and
exposed debug endpoints.

Attackers may gain access to
sensitive data, or even take over the
server through old, unpatched API
versions connected to the same
database.

API10
:2023

Unsafe Consumption of API’s

Developers tend to trust and not
verify the endpoints that interact with
external or third-party APIs, relying
on weaker security requirements such
as those regarding transport security,
authentication/authorization, and
input validation and sanitization.
Attackers need to identify services
the target API integrates with (data
sources) and, eventually, compromise
them.

The impact varies according to what
the target API does with pulled data.
Successful exploitation may lead to
sensitive information exposure to
unauthorized actors, many kinds of
injections, or denial of service.

Table 1: OWASP API Security Top 10 - 2023

Reference: https://owasp.org/www-project-api-security/

<Confidential>

Page 20 of 25

Appendix ‘B’

SANS TOP 25 Most Dangerous Software Errors

The SANS Institute is a cooperative research and education organization. The SANS Top 25

Most Dangerous Software Errors is a list of the most widespread and critical errors that can

lead to serious vulnerabilities in software (please note: not all vulnerability types apply to

all programming languages). The vulnerabilities include insecure interaction between

components, risky resource management, and porous defenses.

The following table summarizes the CWE/SANS TOP 25 Most Dangerous Software Errors:

Rank CWE Description

1 CWE-119

Improper Restriction of Operations
within the Bounds of a Memory
Buffer.

The application performs operations
on a memory buffer, but it can read
from or write to a memory location
that is outside of the intended
boundary of the buffer.

2 CWE-79

Improper Neutralization of Input
During Web Page Generation ('Cross-
site Scripting')

The application does not neutralize or
incorrectly neutralizes user-
controllable input before it is placed
in output that is used as a web page
that is served to other users.

3 CWE-20

Improper Input Validation

The application receives input or
data, but it does not validate or
incorrectly validates that the input
has the properties that are required
to process the data safely and
correctly.

4 CWE-200

Information Exposure

The application exposes sensitive
information to an actor that is not
explicitly authorized to have access to
that information.

5 CWE-125

Out-of-bounds Read

The application reads data past the
end, or before the beginning, of the
intended buffer.

<Confidential>

Page 21 of 25

6 CWE-89

Improper Neutralization of Special
Elements used in an SQL Command
('SQL Injection')

The application constructs all or part
of an SQL command using externally-
influenced input from an upstream
component, but it does not neutralize
or incorrectly neutralizes special
elements that could modify the
intended SQL command when it is
sent to a downstream component.

7 CWE-416

Use After Free

Referencing memory after it has been
freed can cause a program to crash,
use unexpected values, or execute
code.

8 CWE-190

Integer Overflow or Wraparound

The application performs a calculation
that can produce an integer overflow
or wraparound, when the logic
assumes that the resulting value will
always be larger than the original
value. This can introduce other
weaknesses when the calculation is
used for resource management or
execution control.

9 CWE-352

Cross-Site Request Forgery (CSRF)

The Web Application does not, or
cannot, sufficiently verify whether a
well-formed, valid, consistent request
was intentionally provided by the
user who submitted the request.

10 CWE-22

Improper Limitation of a Pathname to
a Restricted Directory ('Path
Traversal')

The application uses external input to
construct a pathname that is intended
to identify a file or directory that is
located underneath a restricted
parent directory, but the software
does not properly neutralize special
elements within the pathname that
can cause the pathname to resolve to
a location that is outside of the
restricted directory.

11 CWE-78

Improper Neutralization of Special
Elements used in an OS Command

The application constructs all or part
of an OS command using externally-
influenced input from an upstream
component, but it does not neutralize

<Confidential>

Page 22 of 25

('OS Command Injection') or incorrectly neutralizes special
elements that could modify the
intended OS command when it is sent
to a downstream component.

12 CWE-787

Out-of-bounds Write

The application writes data past the
end, or before the beginning, of the
intended buffer.

13 CWE-287

Improper Authentication

When an actor claims to have a given
identity, the software does not prove
or insufficiently proves that the claim
is correct.

14 CWE-476

NULL Pointer Dereference

A NULL pointer dereference occurs
when the application dereferences a
pointer that it expects to be valid, but
is NULL, typically causing a crash or
exit.

15 CWE-732

Incorrect Permission Assignment for
Critical Resource

The application specifies permissions
for a security-critical resource in a
way that allows that resource to be
read or modified by unintended
actors.

16 CWE-434

Unrestricted Upload of File with
Dangerous Type

The application allows the attacker to
upload or transfer files of dangerous
types that can be automatically
processed within the product's
environment.

17 CWE-611

Improper Restriction of XML External
Entity Reference

The application processes an XML
document that can contain XML
entities with URIs that resolve to
documents outside of the intended
sphere of control, causing the product
to embed incorrect documents into its
output.

18 CWE-94

Improper Control of Generation of
Code ('Code Injection')

The application constructs all or part
of a code segment using externally-
influenced input from an upstream
component, but it does not neutralize
or incorrectly neutralizes special

<Confidential>

Page 23 of 25

elements that could modify the
syntax or behaviour of the intended
code segment.

19 CWE-798

Use of Hard-coded Credentials

The application contains hard-coded
credentials, such as a password or
cryptographic key, which it uses for
its own inbound authentication,
outbound communication to external
components, or encryption of internal
data.

20 CWE-400

Uncontrolled Resource Consumption

The application does not properly
control the allocation and
maintenance of a limited resource,
thereby enabling an actor to influence
the amount of resources consumed,
eventually leading to the exhaustion
of available resources.

21 CWE-772

Missing Release of Resource after
Effective Lifetime

The application does not release a
resource after its effective lifetime
has ended, i.e., after the resource is
no longer needed.

22 CWE-426

Untrusted Search Path

The application searches for critical
resources using an externally-
supplied search path that can point to
resources that are not under the
application's direct control.

23 CWE-502

Deserialization of Untrusted Data

The application deserializes untrusted
data without sufficiently verifying that
the resulting data will be valid.

24 CWE-269

Improper Privilege Management

The application does not properly
assign, modify, track, or check
privileges for an actor, creating an
unintended sphere of control for that
actor.

25 CWE-295

Improper Certificate Validation

The application does not validate, or
incorrectly validates, a certificate.

<Confidential>

Page 24 of 25

Table 2: CWE/SANS TOP 25 Most Dangerous Software Errors

Reference: https://www.sans.org/top25-software-errors/

<Confidential>

Page 25 of 25

Appendix ‘C’

Tools Description

Burp Suite Professional
Portswigger’s Burp Suite Professional is an advanced set of tools for testing web security.

Burp Suite offers the features for both manual and automated scans. Through Burp Suite,

a user can intercept HTTP traffic, find hidden attack surface, assess strength of tokens,

perform brute-forcing and fuzzing, construct CSRF exploits, modify HTTP messages, scan

for common vulnerabilities including the OWASP Top 10.

SoapUI
SoapUI is a tool for testing Web Services; these can be the SOAP Web Services as well
RESTful Web Services or HTTP based services. SoapUI is an Open Source and completely
free tool with a commercial companion -ReadyAPI- that has extra functionality for
companies with mission critical Web Services.

