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While earning a degree in philosophy may not be the best career move (unless a student plans to 

teach philosophy, and few of these positions are available), I greatly value my years as a student of 

philosophy and the lib- eral arts. For my bachelor’s degree, I wrote an honors paper on Bertrand 

Russell. In graduate school at the University of Minnesota, I took courses from one of the truly great 

philosophers, Herbert Feigl. I read about science and the search for truth, otherwise known as 

epistemology. My favorite philosophy was logical empiricism. 

Although my days of “thinking about thinking” (which is how Feigl de- fined philosophy) are far 

behind me, in those early years of academic train- ing I was able to develop a keen sense for what is 

real and what is just talk. 

 

A model is a representation of things, a rendering or description of reality. A typical model in data 

science is an attempt to relate one set of variables to another. Limited, imprecise, but useful, a 

model helps us to make sense of the world. A model is more than just talk because it is based on 

data. 

Predictive analytics brings together management, information technology, and modeling. It is 

designed for today’s data-intensive world. Predictive analytics is data science, a multidisciplinary skill 

set essential for success in business, nonprofit organizations, and government. Whether forecasting 

sales or market share, finding a good retail site or investment opportunity, identifying consumer 

segments and target markets, or assessing the poten- tial of new products or risks associated with 

existing products, modeling methods in predictive analytics provide the key. 

Data scientists, those working in the field of predictive analytics, speak the language of business—

accounting, finance, marketing, and management. They know about information technology, 

including data structures, al- gorithms, and object-oriented programming. They understand 

statistical modeling, machine learning, and mathematical programming. Data scien- tists are 

methodological eclectics, drawing from many scientific disciplines and translating the results of 

empirical research into words and pictures that management can understand. 

Predictive analytics, as with much of statistics, involves searching for mean- ingful relationships 

among variables and representing those relationships in models. There are response variables—

things we are trying to predict. There are explanatory variables or predictors—things that we 

observe, ma- nipulate, or control and might relate to the response. 

Regression methods help us to predict a response with meaningful mag- nitude, such as quantity 

sold, stock price, or return on investment. Clas- sification methods help us to predict a categorical 

response. Which brand will be purchased? Will the consumer buy the product or not? Will the ac- 

count holder pay off or default on the loan? Is this bank transaction true or fraudulent? 

Prediction problems are defined by their width or number of potential pre- dictors and by their 

depth or number of observations in the data set. It is the number of potential predictors in business, 

marketing, and investment analysis that causes the most difficulty. There can be thousands of 

potential 
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Figure  1.1.    Data and models for research 

 

 

 

predictors with weak relationships to the response. With the aid of com- puters, hundreds or 

thousands of models can be fit to subsets of the data and tested on other subsets of the data, 

providing an evaluation of each predictor. Predictive modeling involves finding good subsets of 

predictors. Models that fit the data well are better than models that fit the data poorly. Simple 

models are better than complex models. 

Consider three general approaches to research and modeling as employed in predictive analytics: 

traditional, data-adaptive, and model-dependent. See figure 1.1. The traditional approach to 

research, statistical inference, and modeling begins with the specification of a theory or model. 

Classi- cal or Bayesian methods of statistical inference are employed. Traditional methods, such as 

linear regression and logistic regression, estimate param- eters for linear predictors. Model building 

involves fitting models to data and checking them with diagnostics. We validate traditional models 

before using them to make predictions. 

When we employ a data-adaptive approach, we begin with data and search through those data to 

find useful predictors. We give little thought to the- ories or hypotheses prior to running the 

analysis. This is the world of ma- chine learning, sometimes called statistical learning or data mining. 

Data- adaptive methods adapt to the available data, representing nonlinear rela- tionships and 

interactions among variables. The data determine the model. 
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Data-adaptive methods are data-driven. As with traditional models, we validate data-adaptive 

models before using them to make predictions. 

Model-dependent research is the third approach. It begins with the spec- ification of a model and 

uses that model to generate data, predictions, or recommendations. Simulations and mathematical 

programming methods, primary tools of operations research, are examples of model-dependent 

research. When employing a model-dependent or simulation approach, models are improved by 

comparing generated data with real data. We  ask whether simulated consumers, firms, and markets 

behave like real con- sumers, firms, and markets. The comparison with real data serves as a form of 

validation. 

It is often a combination of models and methods that works best. Consider an application from the 

field of financial research. The manager of a mutual fund is looking for additional stocks for a fund’s 

portfolio. A financial engi- neer employs a data-adaptive model (perhaps a neural network) to search 

across thousands of performance indicators and stocks, identifying a sub- set of stocks for further 

analysis. Then, working with that subset of stocks, the financial engineer employs a theory-based 

approach (CAPM, the capi- tal asset pricing model) to identify a smaller set of stocks to recommend 

to the fund manager. As a final step, using model-dependent research (math- ematical 

programming), the engineer identifies the minimum-risk capital investment for each of the stocks in 

the portfolio. 

Data may be organized by observational unit, time, and space. The observa- tional or cross-sectional 

unit could be an individual consumer or business or any other basis for collecting and grouping data. 

Data are organized in time by seconds, minutes, hours, days, and so on. Space or location is often 

defined by longitude and latitude. 

Consider numbers of customers entering grocery stores (units of analysis) in Glendale, California on 

Monday (one point in time), ignoring the spa- tial location of the stores—these are cross-sectional 

data. Suppose we work with one of those stores, looking at numbers of customers entering the store 

each day of the week for six months—these are time series data.  Then   we look at numbers of 

customers at all of the grocery stores in Glendale across six months—these are longitudinal or panel 

data. To complete our study, we locate these stores by longitude and latitude, so we have spatial or 

spatio-temporal data. For any of these data structures we could consider measures in addition to the 

number of customers entering stores. We look at store sales, consumer or nearby resident 

demographics, traffic on Glen- dale streets, and so doing move to multiple time series and 

multivariate methods. The organization of the data we collect affects the structure of the models we 

employ. 

As we consider business problems in this book, we touch on many types of models, including cross-

sectional, time series, and spatial data models. Whatever the structure of the data and associated 

models, prediction is the unifying theme. We use the data we have to predict data we do not yet 

have, recognizing that prediction is a precarious enterprise. It is the process of extrapolating and 

forecasting. And model validation is essential to the process. 
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To make predictions, we may employ classical or Bayesian methods. Or we may dispense with 

traditional statistics entirely and rely upon machine learning algorithms. We do what works.1 Our 

approach to predictive ana- lytics is based upon a simple premise: 

The value of a model lies in the quality of its predictions. 

We learn from statistics that we should quantify our uncertainty. On the one hand, we have 

confidence intervals, point estimates with associated stan- dard errors, significance tests, and p-

values—that is the classical way. On the other hand, we have posterior probability distributions, 

probability in- tervals, prediction intervals, Bayes factors, and subjective (perhaps diffuse) priors—

the path of Bayesian statistics. Indices such as the Akaike informa- tion criterion (AIC) or the Bayes 

information criterion (BIC) help us to to judge one model against another, providing a balance 

between goodness- of-fit and parsimony. 

Central to our approach is a training-and-test regimen. We partition sample data into training and 

test sets. We build our model on the training set and Within the statistical literature, Seymour 

Geisser (1929–2004) introduced an approach best described as Bayesian predictive inference 

(Geisser 1993). Bayesian statistics is named after Reverend Thomas Bayes (1706–1761), the creator 

of Bayes Theorem. In our emphasis upon the success of predictions, we are in agreement with 

Geisser. Our approach, however, is purely empirical and in no way dependent upon classical or 

Bayesian thinking. 

Figure 1.2. Training-and-Test Regimen for Model Evaluation 

 

Evaluate it on the test set. Simple two- and three-way data partitioning are shown in figure 1.2. 
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A random splitting of a sample into training and test sets could be fortu- itous, especially when 

working with small data sets, so we sometimes con- duct statistical experiments by executing a 

number of random splits and averaging performance indices from the resulting test sets. There are 

exten- sions to and variations on the training-and-test theme. 

One variation on the training-and-test theme is multi-fold cross-validation, illustrated in figure 1.3. 

We partition the sample data into M folds of ap- proximately equal size and conduct a series of tests. 

For the five-fold cross- validation shown in the figure, we would first train on sets B through E and 

test on set A. Then we would train on sets A and C through E, and test on 

B. We continue until each of the five folds has been utilized as a test set. We assess performance by 

averaging across the test sets. In leave-one-out cross-valuation, the logical extreme of multi-fold 

cross-validation, there are as many test sets as there are observations in the sample. 

  

Figure 1.3. Training-and-Test Using Multi-fold Cross-validation 
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Figure 1.4. Training-and-Test with Bootstrap Resampling 

 

 

 

 

Another variation on the training-and-test regimen is the class of boot- strap methods. If a sample 

approximates the population from which it was drawn, then a sample from the sample (what is 

known as a resample) also approximates the population. A bootstrap procedure, as illustrated in fig- 

ure1.4, involves repeated resampling with replacement. That is, we take many random samples with 

replacement from the sample, and for each of these resamples, we compute a statistic of interest. 

The bootstrap distribu- tion of the statistic approximates the sampling distribution of that statistic. 

What is the value of the bootstrap? It frees us from having to make as- sumptions about the 
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population distribution. We can estimate standard er- rors and make probability statements working 

from the sample data alone. The bootstrap may also be employed to improve estimates of 

prediction er- ror within a leave-one-out cross-validation process. Cross-validation and bootstrap 

methods are reviewed in Davison and Hinkley (1997), Efron and Tibshirani (1993), and Hastie, 

Tibshirani, and Friedman (2009). 

  

 

 

Data visualization is critical to the work of data science. Examples in this book demonstrate the 

importance of data visualization in discovery, diag- nostics, and design. We employ tools of 

exploratory data analysis (dis- covery) and statistical modeling (diagnostics). In communicating 

results to management, we use presentation graphics (design). 

There is no more telling demonstration of the importance of statistical graph- ics and data 

visualization than a demonstration that is affectionately known as the Anscombe Quartet. Consider 

the data sets in table 1.1, developed by Anscombe (1973). Looking at these tabulated data, the 

casual reader will note that the fourth data set is clearly different from the others. What about the 

first three data sets? Are there obvious differences in patterns of rela- tionship between x and y? 

When we regress y on x for the data sets, we see that the models provide similar statistical 

summaries. The mean of the response y is 7.5, the mean of the explanatory variable x is 9. The 

regression analyses for the four data sets are virtually identical.  The fitted regression equation for 

each of the 

four sets is yˆ      =  3 + 0.5x.  The proportion of response variance accounted 

for is 0.67 for each of the four models. 
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Following Anscombe (1973), we would argue that statistical summaries fail to tell the story of data. 

We must look beyond data tables, regression coeffi- cients, and the results of statistical tests. It is 

the plots in figure 1.5 that tell the story. The four Anscombe data sets are very different from one 

another. 

Figure 1.5. Importance of Data Visualization: The Anscombe Quartet 
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The Anscombe Quartet shows that we must look at data to understand them. Python and R 

programs for the Anscombe Quartet are provided at the end of this chapter in exhibits1.1 and 1.2, 

respectively. 

Visualization tools help us learn from data. We explore data, discover pat- terns in data, identify 

groups of observations that go together and unusual observations or outliers. We note relationships 

among variables, sometimes detecting underlying dimensions in the data. 

Graphics for exploratory data analysis are reviewed in classic references by Tukey (1977) and Tukey 

and Mosteller (1977). Regression graphics are covered by Cook (1998), Cook and Weisberg (1999), 

and Fox and Weis- berg (2011). Statistical graphics and data visualization are illustrated in the works 

of Tufte (1990, 1997, 2004, 2006), Few (2009), and Yau (2011, 2013). 

Wilkinson (2005) presents a review of human perception and graphics, as well as a conceptual 

structure for understanding statistical graphics. Cairo (2013) provides a general review of 

information graphics. Heer, Bostock, and Ogievetsky (2010) demonstrate contemporary visualization 

techniques for web distribution. When working with very large data sets, special meth- ods may be 

needed, such as partial transparency and hexbin plots (Unwin, Theus, and Hofmann 2006; Carr, 

Lewin-Koh, and Maechler 2014; Lewin- Koh 2014). 

Python and R represent rich programming environments for data visualiza- tion, including interfaces 

to visualization applications on the World Wide Web. Chun (2007), Beazley (2009), and Beazley and 

Jones (2013) review the Python programming environment. Matloff (2011) and Lander (2014) pro- 

vide useful introductions to R. An R graphics overview is provided by Mur- rell (2011). R lattice 

graphics, discussed by Sarkar (2008, 2014), build upon the conceptual structure of an earlier system 

called S-Plus TrellisTM (Cleve- land 1993; Becker and Cleveland 1996). Wilkinson’s (2005) “grammar 

of graphics” approach has been implemented in the Python ggplot package (Lamp 2014) and in the R 

ggplot2 package (Wickham and Chang 2014), with R programming examples provided by Chang 

(2013). Cairo (2013) and Zeileis, Hornik, and Murrell (2009, 2014) provide advice about colors for 

statistical graphics. Ihaka et al. (2014) show how to specify colors in R by hue, chroma, and 

luminance. 

These are the things that data scientists do: 

Finding out about. This is the first thing we do—information search, finding what others have done 

before, learning from the literature. We draw on the work of academics and practitioners in many 

fields of study, contributors to predictive analytics and data science. 

Preparing text and data. Text is unstructured or partially structured. Data are often messy or missing. 

We extract features from text. We define measures. We prepare text and data for analysis and 

modeling. Looking at data. We do exploratory data analysis, data visualization for the purpose of 

discovery. We look for groups in data. We find outliers. We identify common dimensions, patterns, 

and trends. 

Predicting how much. We are often asked to predict how many units or dollars of product will be 

sold, the price of financial securities or real estate. Regression techniques are useful for making 

these predic- tions. 
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Predicting yes or no. Many business problems are classification prob- lems. We use classification 

methods to predict whether or not a per- son will buy a product, default on a loan, or access a web 

page. 

Testing it out. We examine models with diagnostic graphics. We see how well a model developed on 

one data set works on other data sets. We employ a training-and-test regimen with data 

partitioning, cross-validation, or bootstrap methods. 

Playing what-if. We manipulate key variables to see what happens to our predictions. We play what-

if games in simulated marketplaces. We employ sensitivity or stress testing of mathematical 

programming models. We see how values of input variables affect outcomes, pay- offs, and 

predictions. We assess uncertainty about forecasts. 

Explaining it all. Data and models help us understand the world. We turn what we have learned into 

an explanation that others can under- stand. We present project results in a clear and concise 

manner. These presentations benefit from well-constructed data visualizations. 


