
 Data Analysis With Python

© Confidentiality & Proprietary Information

This document contains information that is Proprietary and confidential (“Confidential Information”) to Boston
Training Academy and shall not be used or disclosed outside.
Further, the Confidential Information should not be transmitted, duplicated, or used in whole or in part for any
purpose other than what it is intended for herein. Any use or disclosure in whole or in part of this Confidential
Information without the express written permission of Boston Training Academy is strictly prohibited.

This is a confidential document prepared by Boston Training Academy.

The illustrative formats and examples have been created solely to simulate Learning and do not purport to
represent/reflect on work practices of any particular party/parties.
Unauthorized possession of the material or disclosure of the Proprietary information may result in legal action.

©Boston Training Academy 2021

2

Values & Data types

The data stored in memory can be of many types. For example, a person's age is stored as a
numeric value and his or her address is stored as alphanumeric characters. Python has various
standard data types that are used to define the operations possible on them and the storage
method for each of them.

Python has five standard data types −

• Numbers

• String

• List

• Tuple

• Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign a
value to them. For example −

var1 = 1

var2 = 10

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the quotation
marks. Python allows for either pairs of single or double quotes. Subsets of strings can be
taken using the slice operator ([] and [:]) with indexes starting at 0 in the beginning of the
string and working their way from -1 at the end.

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items separated
by commas and enclosed within square brackets ([]). To some extent, lists are similar to arrays
in C. One difference between them is that all the items belonging to a list can be of different
data type.

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a number
of values separated by commas. Unlike lists, however, tuples are enclosed within
parentheses.

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or hashes
found in Perl and consist of key-value pairs. A dictionary key can be almost any Python type,
but are usually numbers or strings. Values, on the other hand, can be any arbitrary Python
object.

3

In Python there are some distinct numeric types. These are integers type numbers,

floating point numbers, complex numbers. In the complex numbers, there are two parts

the real and imag. The complex numbers are denoted like (a + bj).

There is another function called fraction. The fraction holds rational numbers and

decimal holds floating point numbers.

Some functions like int(), float(), complex(), these are used to convert numbers to

integers, floats or complex numbers.

Some of the operations and functions of these numeric types are as follows −

Sr.No. Operation/Functions & Description

1

x + y

Sum of x and y

2

x - y

Subtract y from x

3

x * y

Multiply x and y

4

x / y

Divide x by y

4

5

x // y

Quotient of x after dividing by y

6

x % y

Remainder of x after dividing by y

7

x ** y

X to the power y

8

-x

The negated value of x

9

+x

Unchanged x value

10

abs(x)

Absolute (Magnitude) value of x

11

5

int(x)

Convert x to integer

12

float(x)

Convert x to floating point data

13

complex(re, im)

Convert from real and imaginary data to complex number

14

x.conjugate()

Find conjugate of a complex x

15

divmod(x,y)

Find Quotient and Remainder as a tuple

16

pow(x,y)

Find x to the power y

Example Code

Live Demo

6

from fractions import Fraction

x = 100

y = 3.256

print(x + y)

print(x - y)

print(x * y)

print(x / y)

print(x // y)

print(x % 7)

print(12 ** 3)

myComplex1 = complex('7+5j')

myComplex2 = complex('26+8j')

res = myComplex1 + myComplex2

print(res)

print(res.conjugate())

print(divmod(x, 3))

print(Fraction(0.125))

Output

103.256

96.744

325.59999999999997

30.712530712530715

30.0

2

1728

(33+13j)

(33-13j)

(33, 1)

1/8

7

Variables are nothing but reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides what

can be stored in the reserved memory. Therefore, by assigning different data types to

variables, you can store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal sign

(=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to

the right of the = operator is the value stored in the variable. For example −

Live Demo

#!/usr/bin/python

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name

variables, respectively. This produces the following result −

100

1000.0

8

John

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously. For

example −

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned to

the same memory location. You can also assign multiple objects to multiple variables. For

example −

a,b,c = 1,2,"john"

Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a person's age is stored

as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them

and the storage method for each of them.

Python has five standard data types −

Numbers

String

List

Tuple

Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign a

value to them. For example −

var1 = 1

9

var2 = 10

You can also delete the reference to a number object by using the del statement. The

syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For

example −

del var

del var_a, var_b

Python supports four different numerical types −

int (signed integers)

long (long integers, they can also be represented in octal and hexadecimal)

float (floating point real values)

complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

Python allows you to use a lowercase l with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long integers

with an uppercase L.

A complex number consists of an ordered pair of real floating-point numbers denoted by

10

x + yj, where x and y are the real numbers and j is the imaginary unit.

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes. Subsets of

strings can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the

beginning of the string and working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the repetition

operator. For example −

Live Demo

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

This will produce the following result −

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items

11

separated by commas and enclosed within square brackets ([]). To some extent, lists are

similar to arrays in C. One difference between them is that all the items belonging to a

list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1. The plus

(+) sign is the list concatenation operator, and the asterisk (*) is the repetition operator.

For example −

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.2]

abcd

[786, 2.23]

[2.23, 'john', 70.2]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of a

number of values separated by commas. Unlike lists, however, tuples are enclosed within

parentheses.

12

The main differences between lists and tuples are: Lists are enclosed in brackets ([]) and

their elements and size can be changed, while tuples are enclosed in parentheses (())

and cannot be updated. Tuples can be thought of as read-only lists. For example −

Live Demo

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints the complete tuple

print tuple[0] # Prints first element of the tuple

print tuple[1:3] # Prints elements of the tuple starting from 2nd till 3rd

print tuple[2:] # Prints elements of the tuple starting from 3rd element

print tinytuple * 2 # Prints the contents of the tuple twice

print tuple + tinytuple # Prints concatenated tuples

This produce the following result −

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple, which

is not allowed. Similar case is possible with lists −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

13

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays or

hashes found in Perl and consist of key-value pairs. A dictionary key can be almost any

Python type, but are usually numbers or strings. Values, on the other hand, can be any

arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed

using square braces ([]). For example −

Live Demo

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

14

['sales', 6734, 'john']

Dictionaries have no concept of order among elements. It is incorrect to say that the

elements are "out of order"; they are simply unordered.

Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert

between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to another.

These functions return a new object representing the converted value.

Sr.No. Function & Description

1

int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2

long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3

float(x)

Converts x to a floating-point number.

4

complex(real [,imag])

Creates a complex number.

15

5

str(x)

Converts object x to a string representation.

6

repr(x)

Converts object x to an expression string.

7

eval(str)

Evaluates a string and returns an object.

8

tuple(s)

Converts s to a tuple.

9

list(s)

Converts s to a list.

10

set(s)

Converts s to a set.

11

dict(d)

16

Creates a dictionary. d must be a sequence of (key,value) tuples.

12

frozenset(s)

Converts s to a frozen set.

13

chr(x)

Converts an integer to a character.

14

unichr(x)

Converts an integer to a Unicode character.

15

ord(x)

Converts a single character to its integer value.

16

hex(x)

Converts an integer to a hexadecimal string.

17

oct(x)

Converts an integer to an octal string.

