
 Data Analysis With Python

© Confidentiality & Proprietary Information

This document contains information that is Proprietary and confidential (“Confidential Information”) to Boston Training
Academy and shall not be used or disclosed outside.
Further, the Confidential Information should not be transmitted, duplicated, or used in whole or in part for any purpose other
than what it is intended for herein. Any use or disclosure in whole or in part of this Confidential Information without the
express written permission of Boston Training Academy is strictly prohibited.

This is a confidential document prepared by Boston Training Academy.

The illustrative formats and examples have been created solely to simulate Learning and do not purport to
represent/reflect on work practices of any particular party/parties.
Unauthorized possession of the material or disclosure of the Proprietary information may result in legal action.

©Boston Training Academy 2021

2

Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called
operator.

Types of Operator

Python language supports the following types of operators.

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Let us have a look on all operators one by one.

Python Arithmetic Operators

These operators compare the values on either sides of them and decide the relation
among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

== If the values of two operands are equal, then the condition
becomes true.

(a == b)
is not
true.

!= If values of two operands are not equal, then condition becomes
true.

(a != b)
is true.

<> If values of two operands are not equal, then condition becomes
true.

(a <> b)
is true.
This is
similar to
!=

https://www.tutorialspoint.com/python/comparison_operators_example.htm

3

operator.

> If the value of left operand is greater than the value of right
operand, then condition becomes true.

(a > b) is
not true.

< If the value of left operand is less than the value of right operand,
then condition becomes true.

(a < b) is
true.

>= If the value of left operand is greater than or equal to the value of
right operand, then condition becomes true.

(a >= b)
is not
true.

<= If the value of left operand is less than or equal to the value of
right operand, then condition becomes true.

(a <= b)
is true.

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b
assigns
value of a
+ b into c

+= Add AND It adds right operand to the left operand and assign the
result to left operand

c += a is
equivalent
to c = c +
a

-= Subtract
AND

It subtracts right operand from the left operand and assign
the result to left operand

c -= a is
equivalent
to c = c -
a

*= Multiply It multiplies right operand with the left operand and assign c *= a is
equivalent

4

AND the result to left operand to c = c *
a

/= Divide AND It divides left operand with the right operand and assign the
result to left operand

c /= a is
equivalent
to c = c /
a

%= Modulus
AND

It takes modulus using two operands and assign the result
to left operand

c %= a is
equivalent
to c = c %
a

**= Exponent
AND

Performs exponential (power) calculation on operators and
assign value to the left operand

c **= a is
equivalent
to c = c **
a

//= Floor
Division

It performs floor division on operators and assign value to
the left operand

c //= a is
equivalent
to c = c //
a

5

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60;
and b = 13; Now in the binary format their values will be 0011 1100 and 0000 1101
respectively. Following table lists out the bitwise operators supported by Python
language with an example each in those, we use the above two variables (a and b)
as operands −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both
operands

(a & b)
(means
0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61
(means
0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but not both. (a ^ b) = 49
(means
0011 0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61
(means
1100 0011
in 2's
complement
form due to
a signed
binary
number.

<< Binary Left The left operands value is moved left by the number of a << 2 =
240 (means

6

Shift bits specified by the right operand. 1111 0000)

>> Binary Right
Shift

The left operands value is moved right by the number
of bits specified by the right operand.

a >> 2 = 15
(means
0000 1111)

Python Logical Operators

There are following logical operators supported by Python language. Assume
variable a holds 10 and variable b holds 20 then

[Show Example]

Operator Description Example

and Logical
AND

If both the operands are true then condition becomes true. (a and b)
is true.

or Logical OR If any of the two operands are non-zero then condition
becomes true.

(a or b)
is true.

not Logical
NOT

Used to reverse the logical state of its operand. Not(a
and b) is
false.

https://www.tutorialspoint.com/python/logical_operators_example.htm

7

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings,
lists, or tuples. There are two membership operators as explained below −

[Show Example]

Operator Description Example

in Evaluates to true if it finds a variable in the specified sequence
and false otherwise.

x in y, here
in results in
a 1 if x is a
member of
sequence
y.

not in Evaluates to true if it does not finds a variable in the specified
sequence and false otherwise.

x not in y,
here not in
results in a
1 if x is not
a member
of
sequence
y.

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two
Identity operators explained below −

[Show Example]

Operator Description Example

is Evaluates to true if the variables on either side of the operator
point to the same object and false otherwise.

x is y,
here is results
in 1 if id(x)
equals id(y).

is not Evaluates to false if the variables on either side of the operator
point to the same object and true otherwise.

x is not y,
here is
not results in
1 if id(x) is not
equal to id(y).

https://www.tutorialspoint.com/python/membership_operators_example.htm
https://www.tutorialspoint.com/python/identity_operators_example.htm

8

Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

[Show Example]

Sr.No. Operator & Description

1
**

Exponentiation (raise to the power)

2
~ + -

Complement, unary plus and minus (method names for the last two
are +@ and -@)

3
* / % //

Multiply, divide, modulo and floor division

4
+ -

Addition and subtraction

5
>> <<

Right and left bitwise shift

6
&

Bitwise 'AND'

7
^ |

Bitwise exclusive `OR' and regular `OR'

8
<= < > >=

Comparison operators

9
<> == !=

Equality operators

https://www.tutorialspoint.com/python/operators_precedence_example.htm

9

10
= %= /= //= -= += *= **=

Assignment operators

11
is is not

Identity operators

12
in not in

Membership operators

13
not or and

Logical operators

