
 Data Analysis With Python

© Confidentiality & Proprietary Information

This document contains information that is Proprietary and confidential (“Confidential Information”) to Boston
Training Academy and shall not be used or disclosed outside.

Further, the Confidential Information should not be transmitted, duplicated, or used in whole or in part for any
purpose other than what it is intended for herein. Any use or disclosure in whole or in part of this Confidential
Information without the express written permission of Boston Training Academy is strictly prohibited.

This is a confidential document prepared by Boston Training Academy.

The illustrative formats and examples have been created solely to simulate Learning and do not purport to
represent/reflect on work practices of any particular party/parties.

Unauthorized possession of the material or disclosure of the Proprietary information may result in legal action.

©Boston Training Academy 2021

Statements

In general, statements are executed sequentially: The first statement in a function is
executed first, followed by the second, and so on. There may be a situation when you
need to execute a block of code several number of times.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple
times. The following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle looping
requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is
TRUE. It tests the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

3 nested loops

You can use one or more loop inside any another while, for or do..while
loop.

Loop Control Statements

Loop control statements change execution from its normal sequence. When
execution leaves a scope, all automatic objects that were created in that scope are
destroyed.

Python supports the following control statements. Click the following links to check
their detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description

1 break statement

Terminates the loop statement and transfers execution to the statement
immediately following the loop.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its
condition prior to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required
syntactically but you do not want any command or code to execute.

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm
https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

Expression

A regular expression is a special sequence of characters that helps you match or find
other strings or sets of strings, using a specialized syntax held in a pattern. Regular
expressions are widely used in UNIX world.

The Python module re provides full support for Perl-like regular expressions in
Python. The re module raises the exception re.error if an error occurs while compiling
or using a regular expression.

We would cover two important functions, which would be used to handle regular
expressions. But a small thing first: There are various characters, which would have
special meaning when they are used in regular expression. To avoid any confusion
while dealing with regular expressions, we would use Raw Strings as r'expression'.

The match Function

This function attempts to match RE pattern to string with optional flags.

Here is the syntax for this function −

re.match(pattern, string, flags=0)

Here is the description of the parameters −

Sr.No. Parameter & Description

1
pattern

This is the regular expression to be matched.

2
string

This is the string, which would be searched to match the pattern at
the beginning of string.

3
flags

You can specify different flags using bitwise OR (|). These are
modifiers, which are listed in the table below.

The re.match function returns a match object on success, None on failure.

We usegroup(num) or groups() function of match object to get matched expression.

Sr.No. Match Object Method & Description

1
group(num=0)

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if
there weren't any)

Example

#!/usr/bin/python

import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

 print "matchObj.group() : ", matchObj.group()

 print "matchObj.group(1) : ", matchObj.group(1)

 print "matchObj.group(2) : ", matchObj.group(2)

else:

 print "No match!!"

When the above code is executed, it produces following result −

matchObj.group() : Cats are smarter than dogs

matchObj.group(1) : Cats

matchObj.group(2) : smarter

The search Function

This function searches for first occurrence of RE pattern within string with
optional flags.

Here is the syntax for this function −

re.search(pattern, string, flags=0)

Here is the description of the parameters −

Sr.No. Parameter & Description

1
pattern

This is the regular expression to be matched.

2
string

This is the string, which would be searched to match the pattern
anywhere in the string.

3
flags

You can specify different flags using bitwise OR (|). These are
modifiers, which are listed in the table below.

The re.search function returns a match object on success, none on failure. We
use group(num) or groups() function of match object to get matched expression.

Sr.No. Match Object Methods & Description

1
group(num=0)

This method returns entire match (or specific subgroup num)

2
groups()

This method returns all matching subgroups in a tuple (empty if there
weren't any)

Example

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

searchObj = re.search(r'(.*) are (.*?) .*', line, re.M|re.I)

if searchObj:

 print "searchObj.group() : ", searchObj.group()

 print "searchObj.group(1) : ", searchObj.group(1)

 print "searchObj.group(2) : ", searchObj.group(2)

else:

 print "Nothing found!!"

When the above code is executed, it produces following result −

searchObj.group() : Cats are smarter than dogs

searchObj.group(1) : Cats

searchObj.group(2) : smarter

Matching Versus Searching

Python offers two different primitive operations based on regular
expressions: match checks for a match only at the beginning of the string,
while search checks for a match anywhere in the string (this is what Perl does by
default).

Example

#!/usr/bin/python

import re

line = "Cats are smarter than dogs";

matchObj = re.match(r'dogs', line, re.M|re.I)

if matchObj:

 print "match --> matchObj.group() : ", matchObj.group()

else:

 print "No match!!"

searchObj = re.search(r'dogs', line, re.M|re.I)

if searchObj:

 print "search --> searchObj.group() : ", searchObj.group()

else:

 print "Nothing found!!"

When the above code is executed, it produces the following result −

No match!!

search --> searchObj.group() : dogs

Search and Replace

One of the most important re methods that use regular expressions is sub.

Syntax

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl,
substituting all occurrences unless max provided. This method returns modified
string.

Example

#!/usr/bin/python

import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print "Phone Num : ", num

Remove anything other than digits

num = re.sub(r'\D', "", phone)

print "Phone Num : ", num

When the above code is executed, it produces the following result −

Phone Num : 2004-959-559

Phone Num : 2004959559

Regular Expression Modifiers: Option Flags

Regular expression literals may include an optional modifier to control various
aspects of matching. The modifiers are specified as an optional flag. You can provide
multiple modifiers using exclusive OR (|), as shown previously and may be
represented by one of these −

Sr.No. Modifier & Description

1
re.I

Performs case-insensitive matching.

2
re.L

Interprets words according to the current locale. This interpretation affects
the alphabetic group (\w and \W), as well as word boundary behavior(\b
and \B).

3
re.M

Makes $ match the end of a line (not just the end of the string) and makes
^ match the start of any line (not just the start of the string).

4
re.S

Makes a period (dot) match any character, including a newline.

5
re.U

Interprets letters according to the Unicode character set. This flag affects
the behavior of \w, \W, \b, \B.

6
re.X

Permits "cuter" regular expression syntax. It ignores whitespace (except
inside a set [] or when escaped by a backslash) and treats unescaped #
as a comment marker.

Regular Expression Patterns

Except for control characters, (+ ? . * ̂ $ () [] { } | \), all characters match themselves.
You can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Python −

Sr.No. Pattern & Description

1
^

Matches beginning of line.

2
$

Matches end of line.

3
.

Matches any single character except newline. Using m option allows it to
match newline as well.

4
[...]

Matches any single character in brackets.

5
[^...]

Matches any single character not in brackets

6
re*

Matches 0 or more occurrences of preceding expression.

7
re+

Matches 1 or more occurrence of preceding expression.

8
re?

Matches 0 or 1 occurrence of preceding expression.

9
re{ n}

Matches exactly n number of occurrences of preceding expression.

10
re{ n,}

Matches n or more occurrences of preceding expression.

11
re{ n, m}

Matches at least n and at most m occurrences of preceding expression.

12
a| b

Matches either a or b.

13
(re)

Groups regular expressions and remembers matched text.

14
(?imx)

Temporarily toggles on i, m, or x options within a regular expression. If in
parentheses, only that area is affected.

15
(?-imx)

Temporarily toggles off i, m, or x options within a regular expression. If in
parentheses, only that area is affected.

16
(?: re)

Groups regular expressions without remembering matched text.

17
(?imx: re)

Temporarily toggles on i, m, or x options within parentheses.

18
(?-imx: re)

Temporarily toggles off i, m, or x options within parentheses.

19
(?#...)

Comment.

20
(?= re)

Specifies position using a pattern. Doesn't have a range.

21
(?! re)

Specifies position using pattern negation. Doesn't have a range.

22
(?> re)

Matches independent pattern without backtracking.

23
\w

Matches word characters.

24
\W

Matches nonword characters.

25
\s

Matches whitespace. Equivalent to [\t\n\r\f].

26
\S

Matches nonwhitespace.

27
\d

Matches digits. Equivalent to [0-9].

28
\D

Matches nondigits.

29
\A

Matches beginning of string.

30
\Z

Matches end of string. If a newline exists, it matches just before newline.

31
\z

Matches end of string.

32
\G

Matches point where last match finished.

33
\b

Matches word boundaries when outside brackets. Matches backspace
(0x08) when inside brackets.

34
\B

Matches nonword boundaries.

35
\n, \t, etc.

Matches newlines, carriage returns, tabs, etc.

36
\1...\9

Matches nth grouped subexpression.

37
\10

Matches nth grouped subexpression if it matched already. Otherwise
refers to the octal representation of a character code.

Regular Expression Examples

Literal characters

Sr.No. Example & Description

1
python

Match "python".

Character classes

Sr.No. Example & Description

1
[Pp]ython

Match "Python" or "python"

2
rub[ye]

Match "ruby" or "rube"

3
[aeiou]

Match any one lowercase vowel

4
[0-9]

Match any digit; same as [0123456789]

5
[a-z]

Match any lowercase ASCII letter

6
[A-Z]

Match any uppercase ASCII letter

7
[a-zA-Z0-9]

Match any of the above

8
[^aeiou]

Match anything other than a lowercase vowel

9
[^0-9]

Match anything other than a digit

Special Character Classes

Sr.No. Example & Description

1
.

Match any character except newline

2
\d

Match a digit: [0-9]

3
\D

Match a nondigit: [^0-9]

4
\s

Match a whitespace character: [\t\r\n\f]

5
\S

Match nonwhitespace: [^ \t\r\n\f]

6
\w

Match a single word character: [A-Za-z0-9_]

7
\W

Match a nonword character: [^A-Za-z0-9_]

Repetition Cases

Sr.No. Example & Description

1
ruby?

Match "rub" or "ruby": the y is optional

2
ruby*

Match "rub" plus 0 or more ys

3
ruby+

Match "rub" plus 1 or more ys

4
\d{3}

Match exactly 3 digits

5
\d{3,}

Match 3 or more digits

6
\d{3,5}

Match 3, 4, or 5 digits

Nongreedy repetition

This matches the smallest number of repetitions −

Sr.No. Example & Description

1
<.*>

Greedy repetition: matches "<python>perl>"

2
<.*?>

Nongreedy: matches "<python>" in "<python>perl>"

Grouping with Parentheses

Sr.No. Example & Description

1
\D\d+

No group: + repeats \d

2
(\D\d)+

Grouped: + repeats \D\d pair

3
([Pp]ython(,)?)+

Match "Python", "Python, python, python", etc.

Backreferences

This matches a previously matched group again −

Sr.No. Example & Description

1
([Pp])ython&\1ails

Match python&pails or Python&Pails

2
(['"])[^\1]*\1

Single or double-quoted string. \1 matches whatever the 1st group
matched. \2 matches whatever the 2nd group matched, etc.

Alternatives

Sr.No. Example & Description

1
python|perl

Match "python" or "perl"

2
rub(y|le))

Match "ruby" or "ruble"

3
Python(!+|\?)

"Python" followed by one or more ! or one ?

Anchors

This needs to specify match position.

Sr.No. Example & Description

1
^Python

Match "Python" at the start of a string or internal line

2
Python$

Match "Python" at the end of a string or line

3
\APython

Match "Python" at the start of a string

4
Python\Z

Match "Python" at the end of a string

5
\bPython\b

Match "Python" at a word boundary

6
\brub\B

\B is nonword boundary: match "rub" in "rube" and "ruby" but not
alone

7
Python(?=!)

Match "Python", if followed by an exclamation point.

8
Python(?!!)

Match "Python", if not followed by an exclamation point.

Special Syntax with Parentheses

Sr.No. Example & Description

1
R(?#comment)

Matches "R". All the rest is a comment

2
R(?i)uby

Case-insensitive while matching "uby"

3
R(?i:uby)

Same as above

4
rub(?:y|le))

Group only without creating \1 backreference

