
 Data Analysis With Python

© Confidentiality & Proprietary Information

This document contains information that is Proprietary and confidential (“Confidential Information”) to Boston
Training Academy and shall not be used or disclosed outside.

Further, the Confidential Information should not be transmitted, duplicated, or used in whole or in part for any
purpose other than what it is intended for herein. Any use or disclosure in whole or in part of this Confidential
Information without the express written permission of Boston Training Academy is strictly prohibited.

This is a confidential document prepared by Boston Training Academy.

The illustrative formats and examples have been created solely to simulate Learning and do not purport to
represent/reflect on work practices of any particular party/parties.

Unauthorized possession of the material or disclosure of the Proprietary information may result in legal action.

©Boston Training Academy 2021

2

Pythonic Functions and Exceptional Handling

Python provides two very important features to handle any unexpected error in your Python
programs and to add debugging capabilities in them −

• Exception Handling − This would be covered in this tutorial. Here is a list standard
Exceptions available in Python: Standard Exceptions.

• Assertions − This would be covered in Assertions in Python tutorial.

List of Standard Exceptions −

Sr.No. Exception Name & Description

1 Exception

Base class for all exceptions

2 StopIteration

Raised when the next() method of an iterator does not point to any
object.

3 SystemExit

Raised by the sys.exit() function.

4 StandardError

Base class for all built-in exceptions except StopIteration and
SystemExit.

5 ArithmeticError

Base class for all errors that occur for numeric calculation.

6
OverflowError

Raised when a calculation exceeds maximum limit for a numeric type.

7 FloatingPointError

Raised when a floating point calculation fails.

https://www.tutorialspoint.com/python/standard_exceptions.htm
https://www.tutorialspoint.com/python/assertions_in_python.htm

3

8 ZeroDivisionError

Raised when division or modulo by zero takes place for all numeric
types.

9 AssertionError

Raised in case of failure of the Assert statement.

10 AttributeError

Raised in case of failure of attribute reference or assignment.

11 EOFError

Raised when there is no input from either the raw_input() or input()
function and the end of file is reached.

12 ImportError

Raised when an import statement fails.

13 KeyboardInterrupt

Raised when the user interrupts program execution, usually by pressing
Ctrl+c.

14 LookupError

Base class for all lookup errors.

15 IndexError

Raised when an index is not found in a sequence.

16 KeyError

Raised when the specified key is not found in the dictionary.

17 NameError

Raised when an identifier is not found in the local or global namespace.

4

18 UnboundLocalError

Raised when trying to access a local variable in a function or method but
no value has been assigned to it.

19 EnvironmentError

Base class for all exceptions that occur outside the Python environment.

20 IOError

Raised when an input/ output operation fails, such as the print
statement or the open() function when trying to open a file that does
not exist.

21 IOError

Raised for operating system-related errors.

22 SyntaxError

Raised when there is an error in Python syntax.

23 IndentationError

Raised when indentation is not specified properly.

24 SystemError

Raised when the interpreter finds an internal problem, but when this
error is encountered the Python interpreter does not exit.

25 SystemExit

Raised when Python interpreter is quit by using the sys.exit() function.
If not handled in the code, causes the interpreter to exit.

26 TypeError

Raised when an operation or function is attempted that is invalid for the
specified data type.

5

27 ValueError

Raised when the built-in function for a data type has the valid type of
arguments, but the arguments have invalid values specified.

28 RuntimeError

Raised when a generated error does not fall into any category.

29 NotImplementedError

Raised when an abstract method that needs to be implemented in an
inherited class is not actually implemented.

Assertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are done with your
testing of the program.

The easiest way to think of an assertion is to liken it to a raise-if statement (or to be more
accurate, a raise-if-not statement). An expression is tested, and if the result comes up false,
an exception is raised.

Assertions are carried out by the assert statement, the newest keyword to Python,
introduced in version 1.5.

Programmers often place assertions at the start of a function to check for valid input, and
after a function call to check for valid output.

The assert Statement

When it encounters an assert statement, Python evaluates the accompanying expression,
which is hopefully true. If the expression is false, Python raises an AssertionError exception.

The syntax for assert is −

assert Expression[, Arguments]

If the assertion fails, Python uses ArgumentExpression as the argument for the
AssertionError. AssertionError exceptions can be caught and handled like any other
exception using the try-except statement, but if not handled, they will terminate the
program and produce a traceback.

Example

Here is a function that converts a temperature from degrees Kelvin to degrees Fahrenheit.
Since zero degrees Kelvin is as cold as it gets, the function bails out if it sees a negative
temperature −

6

#!/usr/bin/python
def KelvinToFahrenheit(Temperature):
 assert (Temperature >= 0),"Colder than absolute zero!"
 return ((Temperature-273)*1.8)+32
print KelvinToFahrenheit(273)
print int(KelvinToFahrenheit(505.78))
print KelvinToFahrenheit(-5)

When the above code is executed, it produces the following result −

32.0
451
Traceback (most recent call last):
File "test.py", line 9, in <module>
print KelvinToFahrenheit(-5)
File "test.py", line 4, in KelvinToFahrenheit
assert (Temperature >= 0),"Colder than absolute zero!"
AssertionError: Colder than absolute zero!

What is Exception?

An exception is an event, which occurs during the execution of a program that disrupts the
normal flow of the program's instructions. In general, when a Python script encounters a
situation that it cannot cope with, it raises an exception. An exception is a Python object that
represents an error.

When a Python script raises an exception, it must either handle the exception immediately
otherwise it terminates and quits.

Handling an exception

If you have some suspicious code that may raise an exception, you can defend your program
by placing the suspicious code in a try: block. After the try: block, include
an except: statement, followed by a block of code which handles the problem as elegantly
as possible.

Syntax

Here is simple syntax of try....except...else blocks −

try:
 You do your operations here;

except ExceptionI:
 If there is ExceptionI, then execute this block.
except ExceptionII:
 If there is ExceptionII, then execute this block.

7

else:
 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

• A single try statement can have multiple except statements. This is useful when the
try block contains statements that may throw different types of exceptions.

• You can also provide a generic except clause, which handles any exception.

• After the except clause(s), you can include an else-clause. The code in the else-block
executes if the code in the try: block does not raise an exception.

• The else-block is a good place for code that does not need the try: block's protection.

Example

This example opens a file, writes content in the, file and comes out gracefully because there
is no problem at all −

try:
 fh = open("testfile", "w")
 fh.write("This is my test file for exception handling!!")
except IOError:
 print "Error: can\'t find file or read data"
else:
 print "Written content in the file successfully"
 fh.close()

This produces the following result −

Written content in the file successfully

Example

This example tries to open a file where you do not have write permission, so it raises an
exception −

try:
 fh = open("testfile", "r")
 fh.write("This is my test file for exception handling!!")
except IOError:
 print "Error: can\'t find file or read data"
else:
 print "Written content in the file successfully"

8

This produces the following result −

Error: can't find file or read data

The except Clause with No Exceptions

You can also use the except statement with no exceptions defined as follows −

try:
 You do your operations here;

except:
 If there is any exception, then execute this block.

else:
 If there is no exception then execute this block.

This kind of a try-except statement catches all the exceptions that occur. Using this kind of
try-except statement is not considered a good programming practice though, because it
catches all exceptions but does not make the programmer identify the root cause of the
problem that may occur.

The except Clause with Multiple Exceptions

You can also use the same except statement to handle multiple exceptions as follows −

try:
 You do your operations here;

except(Exception1[, Exception2[,...ExceptionN]]]):
 If there is any exception from the given exception list,
 then execute this block.

else:
 If there is no exception then execute this block.

The try-finally Clause

You can use a finally: block along with a try: block. The finally block is a place to put any code
that must execute, whether the try-block raised an exception or not. The syntax of the try-
finally statement is this −

try:
 You do your operations here;

 Due to any exception, this may be skipped.
finally:
 This would always be executed.

9

You cannot use else clause as well along with a finally clause.

Example

try:
 fh = open("testfile", "w")
 fh.write("This is my test file for exception handling!!")
finally:
 print "Error: can\'t find file or read data"

If you do not have permission to open the file in writing mode, then this will produce the
following result −

Error: can't find file or read data

Same example can be written more cleanly as follows −

try:
 fh = open("testfile", "w")
 try:
 fh.write("This is my test file for exception handling!!")
 finally:
 print "Going to close the file"
 fh.close()
except IOError:
 print "Error: can\'t find file or read data"

When an exception is thrown in the try block, the execution immediately passes to
the finally block. After all the statements in the finally block are executed, the exception is
raised again and is handled in the except statements if present in the next higher layer of
the try-except statement.

Argument of an Exception

An exception can have an argument, which is a value that gives additional information about
the problem. The contents of the argument vary by exception. You capture an exception's
argument by supplying a variable in the except clause as follows −

try:
 You do your operations here;

except ExceptionType, Argument:
 You can print value of Argument here...

10

If you write the code to handle a single exception, you can have a variable follow the name
of the exception in the except statement. If you are trapping multiple exceptions, you can
have a variable follow the tuple of the exception.

This variable receives the value of the exception mostly containing the cause of the
exception. The variable can receive a single value or multiple values in the form of a tuple.
This tuple usually contains the error string, the error number, and an error location.

Example

Following is an example for a single exception −

Define a function here.
def temp_convert(var):
 try:
 return int(var)
 except ValueError, Argument:
 print "The argument does not contain numbers\n", Argument

Call above function here.
temp_convert("xyz");

This produces the following result −

The argument does not contain numbers
invalid literal for int() with base 10: 'xyz'

Raising an Exceptions

You can raise exceptions in several ways by using the raise statement. The general syntax for
the raise statement is as follows.

Syntax

raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (for example, NameError) and argument is a value
for the exception argument. The argument is optional; if not supplied, the exception
argument is None.

The final argument, traceback, is also optional (and rarely used in practice), and if present, is
the traceback object used for the exception.

Example

11

An exception can be a string, a class or an object. Most of the exceptions that the Python
core raises are classes, with an argument that is an instance of the class. Defining new
exceptions is quite easy and can be done as follows –

def functionName(level):
 if level < 1:
 raise "Invalid level!", level
 # The code below to this would not be executed
 # if we raise the exception

Note: In order to catch an exception, an "except" clause must refer to the same exception
thrown either class object or simple string. For example, to capture above exception, we
must write the except clause as follows –

try:
 Business Logic here...
except "Invalid level!":
 Exception handling here...
else:
 Rest of the code here...

User-Defined Exceptions

Python also allows you to create your own exceptions by deriving classes from the standard
built-in exceptions.

Here is an example related to RuntimeError. Here, a class is created that is subclassed
from RuntimeError. This is useful when you need to display more specific information when
an exception is caught.

In the try block, the user-defined exception is raised and caught in the except block. The
variable e is used to create an instance of the class Networkerror.

class Networkerror(RuntimeError):
 def __init__(self, arg):
 self.args = arg

So once you defined above class, you can raise the exception as follows −

try:
 raise Networkerror("Bad hostname")
except Networkerror,e:
 print e.args

12

