
57

SQL – STRUCTURE QUERY LANGUAGE

© Confidentiality & Proprietary Information

This document contains information that is Proprietary and confidential (“Confidential

Information”) to Boston Training Academy and shall not be used or disclosed outside.

Further, the Confidential Information should not be transmitted, duplicated, or used in whole

or in part for any purpose other than what it is intended for herein. Any use or disclosure in

whole or in part of this Confidential Information without the express written permission of

Boston Training Academy is strictly prohibited.

This is a confidential document prepared by Boston Training Academy.

The illustrative formats and examples have been created solely to simulate Learning and do

not purport to represent/reflect on work practices of any particular party/parties.

Unauthorized possession of the material or disclosure of the Proprietary information may

result in legal action.

©Boston Training Academy 2021

OMERS table would not have any record.

58

The SQL LIKE clause is used to compare a value to similar values using wildcard

operators. There are two wildcards used in conjunction with the LIKE operator.

• The percent sign (%)

• The underscore (_)

The percent sign represents zero, one or multiple characters. The underscore represents

a single number or character. These symbols can be used in combinations.

Syntax

The basic syntax of % and _ is as follows:

You can combine N number of conditions using AND or OR operators. Here, XXXX could

be any numeric or string value.

19. SQL ─ LIKE Clause SQL

SQL

59

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

MP

+ + + +

+ +

Example

The following table has a few examples showing the WHERE part having different LIKE

clause with '%' and '_' operators:

Statement Description

WHERE SALARY LIKE '200%' Finds any values that start with 200.

WHERE SALARY LIKE '%200%' Finds any values that have 200 in any position.

WHERE SALARY LIKE '_00%' Finds any values that have 00 in the second and third

positions.

WHERE SALARY LIKE '2_%_%' Finds any values that start with 2 and are at least 3

characters in length.

WHERE SALARY LIKE '%2' Finds any values that end with 2.

WHERE SALARY LIKE '_2%3' Finds any values that have a 2 in the second position

and end with a 3.

WHERE SALARY LIKE '2 3' Finds any values in a five-digit number that start with

2 and end with 3.

Let us take a real example, consider the CUSTOMERS table having the records as shown

below.

Following is an example, which would display all the records from the CUSTOMERS table,

where the SALARY starts with 200.

SQL

60

+

NAME

+ +

SALARY

This would produce the following result:

61

The SQL TOP clause is used to fetch a TOP N number or X percent records from a table.

Note: All the databases do not support the TOP clause. For example, MySQL supports the

LIMIT clause to fetch a limited number of records, while Oracle uses the ROWNUM

command to fetch a limited number of records.

Syntax

The basic syntax of the TOP clause with a SELECT statement would be as follows.

Example

Consider the CUSTOMERS table having the following records:

The following query is an example on the SQL server, which would fetch the top 3

records from the CUSTOMERS table.

20. SQL ─ TOP, LIMIT or ROWNUM ClauseSQL

SELECT TOP number|percent column_name(s)

FROM table_name

WHERE

+ + + + +

ID NAME |AGE| SALARY

+ + + + +

1 Ramesh

23 Kota

25 Mumbai

27 Bhopal

22 MP

+ + + + + +

SQL> SELECT TOP 3 FROM CUSTOMERS;

62

NAME AGE ADDRESS SALARY

NAME AGE ADDRESS SALARY

NAME AGE ADDRESS SALARY

SQL

This would produce the following result:

If you are using MySQL server, then here is an equivalent example:

This would produce the following result:

If you are using an Oracle server, then the following code block has an equivalent example.

This would produce the following result:

LIMIT

WHERE ROWNUM <=

63

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

MP

+ + + + + +

The SQL ORDER BY clause is used to sort the data in ascending or descending order,

based on one or more columns. Some databases sort the query results in an ascending

order by default.

Syntax

The basic syntax of the ORDER BY clause is as follows:

You can use more than one column in the ORDER BY clause. Make sure whatever column

you are using to sort that column should be in the column-list.

Example

Consider the CUSTOMERS table having the following records:

The following code block has an example, which would sort the result in an ascending

order by the NAME and the SALARY.

21. SQL ─ ORDER BY Clause SQL

SELECT

FROM

[WHERE

64

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

MP

+ + + + + +

 +

ID NAME |AGE| SALARY

+ + + + + +

+ + + + + +

SQL

This would produce the following result:

The following code block has an example, which would sort the result in the descending

order by NAME.

This would produce the following result:

| 1 | Ramesh | 32| Ahmedabad | 2000.00 |

| 7 | Muffy | 24| Indore | 10000.00 |

| 6 | Komal | 22| MP | 4500.00 |

| 2 | Khilan | 25| Delhi | 1500.00 |

| 3 | kaushik | 23| Kota | 2000.00 |

| 5 | Hardik | 27| Bhopal | 8500.00 |

| 4 | Chaitali | 25| Mumbai | 6500.00 |

65

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

+ + + + + +

The SQL GROUP BY clause is used in collaboration with the SELECT statement to arrange

identical data into groups. This GROUP BY clause follows the WHERE clause in a SELECT

statement and precedes the ORDER BY clause.

Syntax

The basic syntax of a GROUP BY clause is shown in the following code block. The GROUP

BY clause must follow the conditions in the WHERE clause and must precede the ORDER

BY clause if one is used.

Example

Consider the CUSTOMERS table is having the following records:

If you want to know the total amount of the salary on each customer, then the GROUP

BY query would be as follows.

22. SQL ─ Group By SQL

SELECT column1, column2

FROM table_name

WHERE

GROUP BY column1, column2

ORDER BY

SQL

66

+

NAME

+

+

NAME

+ +

SALARY

+ + + + + +

Kota

25 Mumbai

27 Bhopal

22 MP

+ + + + + +

This would produce the following result:

| Chaitali | 6500.00 |

| Hardik | 8500.00 |

| kaushik | 2000.00 |

| Khilan | 1500.00 |

| Komal | 4500.00 |

| Muffy | 10000.00 |

| Ramesh | 2000.00 |

Now, let us look at a table where the CUSTOMERS table has the following records with

duplicate names:

Now again, if you want to know the total amount of salary on each customer, then the

GROUP BY query would be as follows:

SQL

67

+ + +

NAME

+

 +

+ + +

This would produce the following result:

| Hardik | 8500.00 |

| kaushik | 8500.00 |

| Komal | 4500.00 |

| Muffy | 10000.00 |

| Ramesh | 3500.00 |

68

+

NAME

+ +

SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

MP

+ + + + + +

The SQL DISTINCT keyword is used in conjunction with the SELECT statement to

eliminate all the duplicate records and fetching only unique records.

There may be a situation when you have multiple duplicate records in a table. While

fetching such records, it makes more sense to fetch only those unique records instead of

fetching duplicate records.

Syntax

The basic syntax of DISTINCT keyword to eliminate the duplicate records is as follows:

Example

Consider the CUSTOMERS table having the following records:

First, let us see how the following SELECT query returns the duplicate salary records.

23. SQL ─ Distinct Keyword SQL

FROM table_name

WHERE

69

SQL

This would produce the following result, where the salary (2000) is coming twice which

is a duplicate record from the original table.

Now, let us use the DISTINCT keyword with the above SELECT query and then see the

result.

This would produce the following result where we do not have any duplicate entry.

SALARY

+ +

SALARY

+ +

70

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

MP

+ + + + + +

The SQL ORDER BY clause is used to sort the data in ascending or descending order,

based on one or more columns. Some databases sort the query results in an ascending

order by default.

Syntax

The basic syntax of the ORDER BY clause which would be used to sort the result in an

ascending or descending order is as follows:

You can use more than one column in the ORDER BY clause. Make sure that whatever

column you are using to sort, that column should be in the column-list.

Example

Consider the CUSTOMERS table having the following records:

Following is an example, which would sort the result in an ascending order by NAME and

SALARY.

24. SQL ─ SORTING Results SQL

SELECT

FROM

[WHERE

SQL

71

+

NAME

+ +

SALARY

+ + + + + +

1 Ramesh

MP

+ + + + + +

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

MP

+ + + + + +

This would produce the following result:

The following code block has an example, which would sort the result in a descending

order by NAME.

This would produce the following result:

SQL

72

+ + + +

SALARY

+ + + + + +

+ + + + + +

To fetch the rows with their own preferred order, the SELECT query used would be as

follows:

This would produce the following result:

| 2 | Khilan | 25| Delhi | 1500.00 |

| 5 | Hardik | 27| Bhopal | 8500.00 |

| 3 | kaushik | 23| Kota | 2000.00 |

| 6 | Komal | 22| MP | 4500.00 |

| 4 | Chaitali | 25| Mumbai | 6500.00 |

| 7 | Muffy | 24| Indore | 10000.00 |

| 1 | Ramesh | 32| Ahmedabad | 2000.00 |

This will sort the customers by ADDRESS in your ownoOrder of preference first and in a

natural order for the remaining addresses. Also, the remaining Addresses will be sorted in

the reverse alphabetical order.

SQL> SELECT * FROM CUSTOMERS

ORDER BY (CASE ADDRESS

WHEN 'DELHI' THEN 1

WHEN 'BHOPAL' THEN 2

WHEN 'KOTA' THEN 3

WHEN 'AHMADABAD' THEN 4

WHEN 'MP' THEN 5

ELSE 100 END) ASC, ADDRESS DESC;

73

Constraints are the rules enforced on the data columns of a table. These are used to limit

the type of data that can go into a table. This ensures the accuracy and reliability of the

data in the database.

Constraints could be either on a column level or a table level. The column level constraints

are applied only to one column, whereas the table level constraints are applied to the

whole table.

Following are some of the most commonly used constraints available in SQL. These

constraints have already been discussed in SQL - RDBMS Concepts chapter, but it’s worth

to revise them at this point.

NOT NULL Constraint: Ensures that a column cannot have a NULL value.

DEFAULT Constraint: Provides a default value for a column when none is specified.

UNIQUE Constraint: Ensures that all values in a column are different.

PRIMARY Key: Uniquely identifies each row/record in a database table.

FOREIGN Key: Uniquely identifies row/record in any of the given database tables.

CHECK Constraint: The CHECK constraint ensures that all the values in a column

satisfies certain conditions.

INDEX: Used to create and retrieve data from the database very quickly.

Constraints can be specified when a table is created with the CREATE TABLE statement or

you can use the ALTER TABLE statement to create constraints even after the table is

created.

SQL - NOT NULL Constraint

By default, a column can hold NULL values. If you do not want a column to have a NULL

value, then you need to define such a constraint on this column specifying that NULL is

now not allowed for that column.

A NULL is not the same as no data, rather, it represents unknown data.

Example

For example, the following SQL query creates a new table called CUSTOMERS and adds

five columns, three of which are – ID, NAME and AGE. In this we specify not to accept

NULLs:

25. SQL ─ Constraints SQL

AGE INT

https://www.tutorialspoint.com/sql/sql-rdbms-concepts.htm
https://www.tutorialspoint.com/sql/sql-not-null.htm
https://www.tutorialspoint.com/sql/sql-default.htm
https://www.tutorialspoint.com/sql/sql-unique.htm
https://www.tutorialspoint.com/sql/sql-primary-key.htm
https://www.tutorialspoint.com/sql/sql-foreign-key.htm
https://www.tutorialspoint.com/sql/sql-check.htm
https://www.tutorialspoint.com/sql/sql-index.htm

SQL

74

If CUSTOMERS table has already been created, then to add a NOT NULL constraint to the

SALARY column in Oracle and MySQL, you would write a query like the one that is shown

in the following code block.

SQL - DEFAULT Constraint

The DEFAULT constraint provides a default value to a column when the INSERT INTO

statement does not provide a specific value.

Example

For example, the following SQL creates a new table called CUSTOMERS and adds five

columns. Here, the SALARY column is set to 5000.00 by default, so in case the INSERT

INTO statement does not provide a value for this column, then by default this column

would be set to 5000.00.

If the CUSTOMERS table has already been created, then to add a DEFAULT constraint to

the SALARY column, you would write a query like the one which is shown in the code block

below.

ALTER TABLE CUSTOMERS

MODIFY SALARY DECIMAL NOT NULL;

NAME VARCHAR (20)

INT

ADDRESS CHAR

PRIMARY KEY

SQL

75

Drop Default Constraint

To drop a DEFAULT constraint, use the following SQL query.

SQL - UNIQUE Constraint

The UNIQUE Constraint prevents two records from having identical values in a column. In

the CUSTOMERS table, for example, you might want to prevent two or more people from

having an identical age.

Example

For example, the following SQL query creates a new table called CUSTOMERS and adds

five columns. Here, the AGE column is set to UNIQUE, so that you cannot have two records

with the same age.

If the CUSTOMERS table has already been created, then to add a UNIQUE constraint to

the AGE column. You would write a statement like the query that is given in the code block

below.

You can also use the following syntax, which supports naming the constraint in multiple

columns as well.

NAME VARCHAR (20)

INT

ADDRESS CHAR

PRIMARY KEY

SQL

76

DROP a UNIQUE Constraint

To drop a UNIQUE constraint, use the following SQL query.

If you are using MySQL, then you can use the following syntax:

SQL ─ Primary Key

A primary key is a field in a table which uniquely identifies each row/record in a database

table. Primary keys must contain unique values. A primary key column cannot have NULL

values.

A table can have only one primary key, which may consist of single or multiple fields.

When multiple fields are used as a primary key, they are called a composite key.

If a table has a primary key defined on any field(s), then you cannot have two records

having the same value of that field(s).

Note: You would use these concepts while creating database tables.

Create Primary Key

Here is the syntax to define the ID attribute as a primary key in a CUSTOMERS table.

To create a PRIMARY KEY constraint on the "ID" column when the CUSTOMERS table

already exists, use the following SQL syntax:

NOTE: If you use the ALTER TABLE statement to add a primary key, the primary key

column(s) should have already been declared to not contain NULL values (when the table

was first created).

DROP CONSTRAINT myUniqueConstraint;

DROP INDEX myUniqueConstraint;

NAME VARCHAR (20)

INT

ADDRESS CHAR

DECIMAL

PRIMARY KEY

SQL

77

For defining a PRIMARY KEY constraint on multiple columns, use the SQL syntax given

below.

To create a PRIMARY KEY constraint on the "ID" and "NAMES" columns when

CUSTOMERS table already exists, use the following SQL syntax.

Delete Primary Key

You can clear the primary key constraints from the table with the syntax given below.

SQL ─ Foreign Key

A foreign key is a key used to link two tables together. This is sometimes also called as a

referencing key.

A Foreign Key is a column or a combination of columns whose values match a Primary

Key in a different table.

The relationship between 2 tables matches the Primary Key in one of the tables

with a Foreign Key in the second table.

If a table has a primary key defined on any field(s), then you cannot have two records

having the same value of that field(s).

NAME VARCHAR (20)

INT

ADDRESS CHAR

DECIMAL

PRIMARY KEY NAME)

ADD CONSTRAINT PK_CUSTID PRIMARY KEY NAME);

ALTER TABLE CUSTOMERS DROP PRIMARY KEY

SQL

78

Example

Consider the structure of the following two tables.

CUSTOMERS Table:

ORDERS Table

If the ORDERS table has already been created and the foreign key has not yet been set,

the use the syntax for specifying a foreign key by altering a table.

DROP a FOREIGN KEY Constraint

To drop a FOREIGN KEY constraint, use the following SQL syntax.

INT

CHAR

DECIMAL

PRIMARY KEY

INT

PRIMARY KEY

ADD FOREIGN KEY (Customer_ID) REFERENCES CUSTOMERS

SQL

79

SQL ─ CHECK Constraint

The CHECK Constraint enables a condition to check the value being entered into a record.

If the condition evaluates to false, the record violates the constraint and isn't entered the

table.

Example

For example, the following program creates a new table called CUSTOMERS and adds five

columns. Here, we add a CHECK with AGE column, so that you cannot have any

CUSTOMER who is below 18 years.

If the CUSTOMERS table has already been created, then to add a CHECK constraint to

AGE column, you would write a statement like the one given below.

You can also use the following syntax, which supports naming the constraint in multiple

columns as well:

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL syntax. This syntax does not work

with MySQL.

AGE INT

NOT NULL CHECK (AGE >=

ADDRESS CHAR

DECIMAL

PRIMARY KEY

MODIFY AGE INT NOT NULL CHECK (AGE >= 18

ADD CONSTRAINT myCheckConstraint CHECK(AGE >= 18);

SQL

80

SQL ─ INDEX Constraint

The INDEX is used to create and retrieve data from the database very quickly. An Index

can be created by using a single or a group of columns in a table. When the index is

created, it is assigned a ROWID for each row before it sorts out the data.

Proper indexes are good for performance in large databases, but you need to be careful

while creating an index. A selection of fields depends on what you are using in your SQL

queries.

Example

For example, the following SQL syntax creates a new table called CUSTOMERS and adds

five columns:

Now, you can create an index on a single or multiple columns using the syntax given

below.

To create an INDEX on the AGE column, to optimize the search on customers for a

specific age, follow the SQL syntax which is given below.

DROP an INDEX Constraint

To drop an INDEX constraint, use the following SQL syntax.

NAME VARCHAR (20)

INT

ADDRESS CHAR

DECIMAL

PRIMARY KEY

ON

ON CUSTOMERS AGE

DROP INDEX idx_age;

SQL

81

Dropping Constraints

Any constraint that you have defined can be dropped using the ALTER TABLE command

with the DROP CONSTRAINT option.

For example, to drop the primary key constraint in the EMPLOYEES table, you can use

the following command.

Some implementations may provide shortcuts for dropping certain constraints. For

example, to drop the primary key constraint for a table in Oracle, you can use the following

command.

Some implementations allow you to disable constraints. Instead of permanently dropping

a constraint from the database, you may want to temporarily disable the constraint and

then enable it later.

Integrity Constraints

Integrity constraints are used to ensure accuracy and consistency of the data in a relational

database. Data integrity is handled in a relational database through the concept of

referential integrity.

There are many types of integrity constraints that play a role in Referential Integrity

(RI). These constraints include Primary Key, Foreign Key, Unique Constraints and other

constraints which are mentioned above.

82

+ + + + +- +

The SQL Joins clause is used to combine records from two or more tables in a database.

A JOIN is a means for combining fields from two tables by using values common to each.

Consider the following two tables:

Table 1: CUSTOMERS Table

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Table 2: ORDERS Table

+ - --

|OID

+

| DATE

+ -

| CUSTOMER_ID

+

|

 +

AMOUNT |

+ - -- + + - + +

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+ -----

+---------------------

+------------- + --------+

Now, let us join these two tables in our SELECT statement as shown below.

26. SQL ─ Using Joins SQL

+ +- - - -
+ ----+---------- +

+

| ID | NAME |AGE| ADDRESS | SALARY |

+ + - + + - +- - - - +

SQL

83

NAME

+

AGE AMOUNT

+

This would produce the following result.

| 3 | kaushik | 23 | 3000 |

| 3 | kaushik | 23 | 1500 |

| 2 | Khilan | 25 | 1560 |

| 4 | Chaitali | 25 | 2060 |

Here, it is noticeable that the join is performed in the WHERE clause. Several operators

can be used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT;

they can all be used to join tables. However, the most common operator is the equal to

symbol.

There are different types of joins available in SQL:

INNER JOIN: returns rows when there is a match in both tables.

LEFT JOIN: returns all rows from the left table, even if there are no matches in

the right table.

RIGHT JOIN: returns all rows from the right table, even if there are no matches in

the left table.

FULL JOIN: returns rows when there is a match in one of the tables.

SELF JOIN: is used to join a table to itself as if the table were two tables,

temporarily renaming at least one table in the SQL statement.

CARTESIAN JOIN: returns the Cartesian product of the sets of records from the

two or more joined tables.

Let us now discuss each of these joins in detail.

SQL-INNER JOIN

The most important and frequently used of the joins is the INNER JOIN. They are also

referred to as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables

(table1 and table2) based upon the join-predicate. The query compares each row of table1

with each row of table2 to find all pairs of rows which satisfy the join-predicate. When the

join-predicate is satisfied, column values for each matched pair of rows of A and B are

combined into a result row.

Syntax

https://www.tutorialspoint.com/sql/sql-inner-joins.htm
https://www.tutorialspoint.com/sql/sql-left-joins.htm
https://www.tutorialspoint.com/sql/sql-right-joins.htm
https://www.tutorialspoint.com/sql/sql-full-joins.htm
https://www.tutorialspoint.com/sql/sql-self-joins.htm
https://www.tutorialspoint.com/sql/sql-cartesian-joins.htm

SQL

84

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

+ + + + + +

 +

+ + + -+

+ + + -+

The basic syntax of the INNER JOIN is as follows.

Example

Consider the following two tables.

Table 1: CUSTOMERS Table is as follows.

Table 2: ORDERS Table is as follows.

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

SELECT

FROM

ON

SQL

85

NAME AMOUNT DATE

+ + +

+ + + +

Now, let us join these two tables using the INNER JOIN as follows:

This would produce the following result.

SQL─ LEFT JOIN

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in

the right table. This means that if the ON clause matches 0 (zero) records in the right

table; the join will still return a row in the result, but with NULL in each column from the

right table.

This means that a left join returns all the values from the left table, plus matched values

from the right table or NULL in case of no matching join predicate.

Syntax

The basic syntax of a LEFT JOIN is as follows.

Here, the given condition could be any given expression based on your requirement.

SELECT

FROM

ON

SQL

86

+

NAME

+ +

SALARY

+ + + + + +

1 Ramesh

Kota

25 Mumbai

27 Bhopal

22 MP

+ + + + + +

 +

+ + + -+

+ + + -+

Example

Consider the following two tables,

Table 1: CUSTOMERS Table is as follows.

Table 2: Orders Table is as follows.

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

Now, let us join these two tables using the LEFT JOIN as follows.

This would produce the following result:

 ++ - + + +

| ID | NAME | AMOUNT | DATE |

+ + - + + +

SQL

87

+ + + +

 +

ID NAME |AGE| SALARY

+ + + + + +

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

SQL- RIGHT JOIN

The SQL RIGHT JOIN returns all rows from the right table, even if there are no matches

in the left table. This means that if the ON clause matches 0 (zero) records in the left

table; the join will still return a row in the result, but with NULL in each column from the

left table.

This means that a right join returns all the values from the right table, plus matched values

from the left table or NULL in case of no matching join predicate.

Syntax

The basic syntax of a RIGHT JOIN is as follow.

Example

Consider the following two tables,

Table 1: CUSTOMERS Table is as follows.

| 1 | Ramesh | 32| Ahmedabad | 2000.00 |

| 2 | Khilan | 25| Delhi | 1500.00 |

| 3 | kaushik | 23| Kota | 2000.00 |

| 4 | Chaitali | 25| Mumbai | 6500.00 |

| 5 | Hardik | 27| Bhopal | 8500.00 |

FROM

ON

SQL

88

+ + + + +

+ +

+ +

+ + + -+

+

NAME AMOUNT DATE

+ + + +

+ + + +

Table 2: ORDERS Table is as follows.

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

Now, let us join these two tables using the RIGHT JOIN as follows.

This would produce the following result:

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

SQL─ FULLJOIN

The SQL FULL JOIN combines the results of both left and right outer joins.

The joined table will contain all records from both the tables and fill in NULLs for missing

matches on either side.

SQL

+ + + +

ID NAME SALARY

+ + + +

+ + + + +- +

Syntax

The basic syntax of a FULL JOIN is as follows:

Here, the given condition could be any given expression based on your requirement.

Example

Consider the following two tables.

Table 1: CUSTOMERS Table is as follows.

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Table 2: ORDERS Table is as follows.

+ - --

|OID

+

| DATE

+

| CUSTOMER_ID

+

|

 +

AMOUNT |

+ - -- + + + +

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+ -----

+--------------------- +------------- + --------+

SELECT

FROM

ON

89

SQL

90

+ +

NAME AMOUNT DATE

+ + + +

+ + + +

Now, let us join these two tables using FULL JOIN as follows.

This would produce the following result.

| 1 | Ramesh | NULL | NULL |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | NULL | NULL |

| 6 | Komal | NULL | NULL |

| 7 | Muffy | NULL | NULL |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

If your Database does not support FULL JOIN (MySQL does not support FULL JOIN), then

you can use UNION ALL clause to combine these two JOINS as shown below.

SQL

91

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

MP

+ + + + + +

SQL─SELFJOIN

The SQL SELF JOIN is used to join a table to itself as if the table were two tables;

temporarily renaming at least one table in the SQL statement.

Syntax

The basic syntax of SELF JOIN is as follows:

Here, the WHERE clause could be any given expression based on your requirement.

Example

Consider the following table.

CUSTOMERS Table is as follows.

Now, let us join this table using SELF JOIN as follows:

WHERE

WHERE a.SALARY < b.SALARY;

SQL

92

+ + +

NAME SALARY

+ + +

+ + +

This would produce the following result:

| 2 | Ramesh | 1500.00 |

| 2 | kaushik | 1500.00 |

| 1 | Chaitali | 2000.00 |

| 2 | Chaitali | 1500.00 |

| 3 | Chaitali | 2000.00 |

| 6 | Chaitali | 4500.00 |

| 1 | Hardik | 2000.00 |

| 2 | Hardik | 1500.00 |

| 3 | Hardik | 2000.00 |

| 4 | Hardik | 6500.00 |

| 6 | Hardik | 4500.00 |

| 1 | Komal | 2000.00 |

| 2 | Komal | 1500.00 |

| 3 | Komal | 2000.00 |

| 1 | Muffy | 2000.00 |

| 2 | Muffy | 1500.00 |

| 3 | Muffy | 2000.00 |

| 4 | Muffy | 6500.00 |

| 5 | Muffy | 8500.00 |

| 6 | Muffy | 4500.00 |

SQL ─ CARTESIAN or CROSS JOIN

The CARTESIAN JOIN or CROSS JOIN returns the Cartesian product of the sets of records from

two or more joined tables. Thus, it equates to an inner join where the join-condition always

evaluates to either True or where the join-condition is absent from the statement.

Syntax

The basic syntax of the CARTESIAN JOIN or the CROSS JOIN is as follows:

SELECT

SQL

+ + + +

ID NAME SALARY

+ + + +

+ + + + +- +

+ +

DATE

+ +

 + +

 +

Example

Consider the following two tables.

Table 1: CUSTOMERS table is as follows.

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Table 2: ORDERS Table is as follows:

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+ -----

+--------------------- +------------- + --------+

Now, let us join these two tables using INNER JOIN as follows:

This would produce the following result:

93

94

SQL

+ + - + + +

| ID | NAME | AMOUNT | DATE |

+ + - + + +

| 1 | Ramesh | 3000 | 2009-10-08 00:00:00 |

| 1 | Ramesh | 1500 | 2009-10-08 00:00:00 |

| 1 | Ramesh | 1560 | 2009-11-20 00:00:00 |

| 1 | Ramesh | 2060 | 2008-05-20 00:00:00 |

| 2 | Khilan | 3000 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1500 | 2009-10-08 00:00:00 |

| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |

| 2 | Khilan | 2060 | 2008-05-20 00:00:00 |

| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |

| 3 | kaushik | 1560 | 2009-11-20 00:00:00 |

| 3 | kaushik | 2060 | 2008-05-20 00:00:00 |

| 4 | Chaitali | 3000 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 1500 | 2009-10-08 00:00:00 |

| 4 | Chaitali | 1560 | 2009-11-20 00:00:00 |

| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |

| 5 | Hardik | 3000 | 2009-10-08 00:00:00 |

| 5 | Hardik | 1500 | 2009-10-08 00:00:00 |

| 5 | Hardik | 1560 | 2009-11-20 00:00:00 |

| 5 | Hardik | 2060 | 2008-05-20 00:00:00 |

| 6 | Komal | 3000 | 2009-10-08 00:00:00 |

| 6 | Komal | 1500 | 2009-10-08 00:00:00 |

| 6 | Komal | 1560 | 2009-11-20 00:00:00 |

| 6 | Komal | 2060 | 2008-05-20 00:00:00 |

| 7 | Muffy | 3000 | 2009-10-08 00:00:00 |

| 7 | Muffy | 1500 | 2009-10-08 00:00:00 |

| 7 | Muffy | 1560 | 2009-11-20 00:00:00 |

| 7 | Muffy | 2060 | 2008-05-20 00:00:00 |

+ + - + + +

95

