

SQL – STRUCTURE QUERY LANGUAGE

© Confidentiality & Proprietary Information

This document contains information that is Proprietary and confidential (“Confidential

Information”) to Boston Training Academy and shall not be used or disclosed outside.

Further, the Confidential Information should not be transmitted, duplicated, or used in whole

or in part for any purpose other than what it is intended for herein. Any use or disclosure in

whole or in part of this Confidential Information without the express written permission of

Boston Training Academy is strictly prohibited.

This is a confidential document prepared by Boston Training Academy.

The illustrative formats and examples have been created solely to simulate Learning and do

not purport to represent/reflect on work practices of any particular party/parties.

Unauthorized possession of the material or disclosure of the Proprietary information may

result in legal action.

©Boston Training Academy 2021

|

+

7 |

-+

Muffy |

+

109

Indexes are special lookup tables that the database search engine can use to speed up

data retrieval. Simply put, an index is a pointer to data in a table. An index in a database

is very similar to an index in the back of a book.

For example, if you want to reference all pages in a book that discusses a certain topic,

you first refer to the index, which lists all the topics alphabetically and are then referred

to one or more specific page numbers.

An index helps to speed up SELECT queries and WHERE clauses, but it slows down data

input, with the UPDATE and the INSERT statements. Indexes can be created or dropped

with no effect on the data.

Creating an index involves the CREATE INDEX statement, which allows you to name the

index, to specify the table and which column or columns to index, and to indicate whether

the index is in an ascending or descending order.

Indexes can also be unique, like the UNIQUE constraint, in that the index prevents

duplicate entries in the column or combination of columns on which there is an index.

The CREATE INDEX Command

The basic syntax of a CREATE INDEX is as follows.

Single-Column Indexes

A single-column index is created based on only one table column. The basic syntax is as

follows.

Unique Indexes

Unique indexes are used not only for performance, but also for data integrity. A unique

index does not allow any duplicate values to be inserted into the table. The basic syntax

is as follows.

30. SQL – Indexes SQL

ON table_name (column_name);

on table_name (column_name);

SQL

110

Composite Indexes

A composite index is an index on two or more columns of a table. Its basic syntax is as

follows.

Whether to create a single-column index or a composite index, take into consideration the

column(s) that you may use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should

there be two or more columns that are frequently used in the WHERE clause as filters, the

composite index would be the best choice.

Implicit Indexes

Implicit indexes are indexes that are automatically created by the database server when

an object is created. Indexes are automatically created for primary key constraints and

unique constraints.

The DROP INDEX Command

An index can be dropped using SQL DROP command. Care should be taken when dropping

an index because the performance may either slow down or improve.

The basic syntax is as follows:

You can check the INDEX Constraint chapter to see some actual examples on Indexes.

When should indexes be avoided?

Although indexes are intended to enhance a database's performance, there are times when

they should be avoided.

The following guidelines indicate when the use of an index should be reconsidered.

• Indexes should not be used on small tables.

• Tables that have frequent, large batch updates or insert operations.

• Indexes should not be used on columns that contain a high number of NULL values.

• Columns that are frequently manipulated should not be indexed.

SQL - INDEX Constraint

The INDEX is used to create and retrieve data from the database very quickly. Index can

be created by using a single or group of columns in a table. When the index is created, it

is assigned a ROWID for each row before it sorts out the data.

https://www.tutorialspoint.com/sql/sql-index.htm

SQL

111

Proper indexes are good for performance in large databases, but you need to be careful

while creating an index. Selection of fields depends on what you are using in your SQL

queries.

Example

For example, the following SQL creates a new table called CUSTOMERS and adds five

columns in it.

Now, you can create an index on a single or multiple columns using the syntax given

below.

To create an INDEX on the AGE column, to optimize the search on customers for a

specific age, you can use the following SQL syntax:

DROP an INDEX Constraint

To drop an INDEX constraint, use the following SQL syntax.

NAME VARCHAR (20)

INT

ADDRESS CHAR

DECIMAL

PRIMARY KEY

ON CUSTOMERS AGE

DROP INDEX idx_age;

112

The SQL ALTER TABLE command is used to add, delete or modify columns in an existing

table. You should also use the ALTER TABLE command to add and drop various constraints

on an existing table.

Syntax

The basic syntax of an ALTER TABLE command to add a New Column in an existing table

is as follows.

The basic syntax of an ALTER TABLE command to DROP COLUMN in an existing table is

as follows.

The basic syntax of an ALTER TABLE command to change the DATA TYPE of a column in

a table is as follows.

The basic syntax of an ALTER TABLE command to add a NOT NULL constraint to a

column in a table is as follows.

The basic syntax of an ALTER TABLE command to ADD UNIQUE CONSTRAINT to a

table is as follows.

The basic syntax of an ALTER TABLE command to ADD CHECK CONSTRAINT to a table

is as follows.

31. SQL ─ ALTER TABLE Command

ADD CONSTRAINT MyUniqueConstraint UNIQUE(column1,

SQL

113

+

NAME

+ +

SALARY

+ + + + + +

The basic syntax of an ALTER TABLE command to ADD PRIMARY KEY constraint to a

table is as follows.

The basic syntax of an ALTER TABLE command to DROP CONSTRAINT from a table is

as follows.

If you're using MySQL, the code is as follows:

The basic syntax of an ALTER TABLE command to DROP PRIMARY KEY constraint from

a table is as follows.

If you're using MySQL, the code is as follows:

Example

Consider the CUSTOMERS table having the following records:

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

DROP CONSTRAINT MyUniqueConstraint;

DROP CONSTRAINT MyPrimaryKey;

DROP PRIMARY KEY;

SQL

114

NAME AGE ADDRESS SALARY SEX

1 Ramesh

23 Kota

25 Mumbai

27 Bhopal

22 MP

NAME AGE ADDRESS

SALARY

Following is the example to ADD a New Column to an existing table:

Now, the CUSTOMERS table is changed and following would be output from the SELECT

statement.

Following is the example to DROP sex column from the existing table.

Now, the CUSTOMERS table is changed and following would be the output from the

SELECT statement.

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Ramesh | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | kaushik | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+ + + + + +

ALTER TABLE CUSTOMERS ADD SEX

SQL

115

32. SQL - TRUNCATE TABLE Command SQL

116

+

NAME

+ +

SALARY

+ + + + + +

1 Ramesh

Kota

25 Mumbai

27 Bhopal

22 MP

+ + + + + +

The SQL TRUNCATE TABLE command is used to delete complete data from an existing

table.

You can also use DROP TABLE command to delete complete table but it would remove

complete table structure form the database and you would need to re-create this table

once again if you wish you store some data.

Syntax

The basic syntax of a TRUNCATE TABLE command is as follows.

Example

Consider a CUSTOMERS table having the following records:

Following is the example of a Truncate command.

Now, the CUSTOMERS table is truncated and the output from SELECT statement will be

as shown in the code block below:

TRUNCATE TABLE table_name;

SQL> SELECT FROM CUSTOMERS;

33. SQL ─ Using Views SQL

117

+

NAME

+ +

SALARY

+ + + + + +

A view is nothing more than a SQL statement that is stored in the database with an

associated name. A view is actually a composition of a table in the form of a predefined

SQL query.

A view can contain all rows of a table or select rows from a table. A view can be created

from one or many tables which depends on the written SQL query to create a view.

Views, which are a type of virtual tables allow users to do the following:

• Structure data in a way that users or classes of users find natural or intuitive.

• Restrict access to the data in such a way that a user can see and (sometimes)

modify exactly what they need and no more.

• Summarize data from various tables which can be used to generate reports.

Creating Views

Database views are created using the CREATE VIEW statement. Views can be created

from a single table, multiple tables or another view.

To create a view, a user must have the appropriate system privilege according to the

specific implementation.

The basic CREATE VIEW syntax is as follows:

You can include multiple tables in your SELECT statement in a similar way as you use

them in a normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the following records:

| 1 | Ramesh | 32| Ahmedabad | 2000.00 |

| 2 | Khilan | 25| Delhi | 1500.00 |

| 3 | kaushik | 23| Kota | 2000.00 |

| 4 | Chaitali | 25| Mumbai | 6500.00 |

CREATE VIEW view_name AS

SELECT column1,

WHERE

SQL

118

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Following is an example to create a view from the CUSTOMERS table. This view would be

used to have customer name and age from the CUSTOMERS table.

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table.

Following is an example for the same.

This would produce the following result.

| Ramesh | 32 |

| Khilan | 25 |

| kaushik | 23 |

| Chaitali | 25 |

| Hardik | 27 |

| Komal | 22 |

| Muffy | 24 |

The WITH CHECK OPTION

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH

CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the condition(s) in the

view definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an error.

The following code block has an example of creating same view CUSTOMERS_VIEW with

the WITH CHECK OPTION.

SELECT name, age

SQL > SELECT FROM CUSTOMERS_VIEW;

SQL

119

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the

view's AGE column, because the view is defined by data that does not have a NULL value

in the AGE column.

Updating a View

A view can be updated under certain conditions which are given below –

• The SELECT clause may not contain the keyword DISTINCT.

• The SELECT clause may not contain summary functions.

• The SELECT clause may not contain set functions.

• The SELECT clause may not contain set operators.

• The SELECT clause may not contain an ORDER BY clause.

• The FROM clause may not contain multiple tables.

• The WHERE clause may not contain subqueries.

• The query may not contain GROUP BY or HAVING.

• Calculated columns may not be updated.

• All NOT NULL columns from the base table must be included in the view in order

for the INSERT query to function.

So, if a view satisfies all the above-mentioned rules then you can update that view. The

following code block has an example to update the age of Ramesh.

This would ultimately update the base table CUSTOMERS and the same would reflect in

the view itself. Now, try to query the base table and the SELECT statement would produce

the following result.

SELECT name, age

WHERE age IS NOT NULL

WITH CHECK OPTION;

SQL

120

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Bhopal

MP

+ + + + + +

+

NAME

+ +

SALARY

+ + + + + +

Inserting Rows into a View

Rows of data can be inserted into a view. The same rules that apply to the UPDATE

command also apply to the INSERT command.

Here, we cannot insert rows in the CUSTOMERS_VIEW because we have not included all

the NOT NULL columns in this view, otherwise you can insert rows in a view in a similar

way as you insert them in a table.

Deleting Rows into a View

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and

INSERT commands apply to the DELETE command.

Following is an example to delete a record having AGE = 22.

This would ultimately delete a row from the base table CUSTOMERS and the same would

reflect in the view itself. Now, try to query the base table and the SELECT statement would

produce the following result.

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

22;

SQL

121

Dropping Views

Obviously, where you have a view, you need a way to drop the view if it is no longer

needed. The syntax is very simple and is given below:

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table.

| 7 | Muffy | 24 | Indore | 10000.00 |

+ + + + -
+

+

122

+

NAME

+ +

SALARY

The HAVING Clause enables you to specify conditions that filter which group results

appear in the results.

The WHERE clause places conditions on the selected columns, whereas the HAVING

clause places conditions on groups created by the GROUP BY clause.

Syntax

The following code block shows the position of the HAVING Clause in a query.

The HAVING clause must follow the GROUP BY clause in a query and must also precede

the ORDER BY clause if used. The following code block has the syntax of the SELECT

statement including the HAVING clause:

Example

Consider the CUSTOMERS table having the following records.

| 1 | Ramesh | 32| Ahmedabad | 2000.00 |

| 2 | Khilan | 25| Delhi | 1500.00 |

| 3 | kaushik | 23| Kota | 2000.00 |

34. SQL ─ Having Clause SQL

SELECT

FROM

WHERE

GROUP BY column1, column2

HAVING

123

+ + + + + +

SQL

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

Following is an example, which would display a record for a similar age count that would

be more than or equal to 2.

This would produce the following result:

FROM CUSTOMERS

+ + + + + +

| ID | NAME | AGE | ADDRESS | SALARY |

+ + + + + +

| 2 | Khilan | 25 | Delhi | 1500.00 |

+ + + + + +

124

A transaction is a unit of work that is performed against a database. Transactions are units

or sequences of work accomplished in a logical order, whether in a manual fashion by a

user or automatically by some sort of a database program.

A transaction is the propagation of one or more changes to the database. For example, if

you are creating a record or updating a record or deleting a record from the table, then

you are performing a transaction on that table. It is important to control these transactions

to ensure the data integrity and to handle database errors.

Practically, you will club many SQL queries into a group and you will execute all of them

together as a part of a transaction.

Properties of Transactions

Transactions have the following four standard properties, usually referred to by the

acronym ACID.

• Atomicity: ensures that all operations within the work unit are completed

successfully. Otherwise, the transaction is aborted at the point of failure and all the

previous operations are rolled back to their former state.

• Consistency: ensures that the database properly changes states upon a

successfully committed transaction.

• Isolation: enables transactions to operate independently of and transparent to

each other.

• Durability: ensures that the result or effect of a committed transaction persists

in case of a system failure.

Transaction Control

The following commands are used to control transactions.

• COMMIT: to save the changes.

• ROLLBACK: to roll back the changes.

• SAVEPOINT: creates points within the groups of transactions in which to

ROLLBACK.

• SET TRANSACTION: Places a name on a transaction.

Transactional Control Commands

Transactional control commands are only used with the DML Commands such as –

INSERT, UPDATE and DELETE only. They cannot be used while creating tables or dropping
them because these operations are automatically committed in the database.

35. SQL – Transactions SQL

SQL

125

+

NAME

+ +

SALARY

+ + + + + +

1 Ramesh

MP

+ + + + + +

+

NAME

+ +

SALARY

+ + + + + +

The COMMIT Command

The COMMIT command is the transactional command used to save changes invoked by a

transaction to the database. The COMMIT command saves all the transactions to the

database since the last COMMIT or ROLLBACK command.

The syntax for the COMMIT command is as follows.

Example

Consider the CUSTOMERS table having the following records:

Following is an example which would delete those records from the table which have age

= 25 and then COMMIT the changes in the database.

Thus, two rows from the table would be deleted and the SELECT statement would

produce the following result.

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

25;

SQL> COMMIT;

SQL

126

+ + + + +

The ROLLBACK Command

The ROLLBACK command is the transactional command used to undo transactions that

have not already been saved to the database. This command can only be used to undo

transactions since the last COMMIT or ROLLBACK command was issued.

The syntax for a ROLLBACK command is as follows:

Example

Consider the CUSTOMERS table having the following records:

Following is an example, which would delete those records from the table which have the

age = 25 and then ROLLBACK the changes in the database.

+ + + + +

ID NAME |AGE| SALARY

+ + + + +

1 Ramesh

23 Kota

25 Mumbai

27 Bhopal

22 MP

+ + + + + +

25;

SQL

127

+ + + + +

ID NAME |AGE| SALARY

+ + + + +

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

Bhopal

MP

+ + + + + +

Thus, the delete operation would not impact the table and the SELECT statement would

produce the following result.

The SAVEPOINT Command

A SAVEPOINT is a point in a transaction when you can roll the transaction back to a

certain point without rolling back the entire transaction.

The syntax for a SAVEPOINT command is as shown below.

This command serves only in the creation of a SAVEPOINT among all the transactional

statements. The ROLLBACK command is used to undo a group of transactions.

The syntax for rolling back to a SAVEPOINT is as shown below.

Following is an example where you plan to delete the three different records from the

CUSTOMERS table. You want to create a SAVEPOINT before each delete, so that you can

ROLLBACK to any SAVEPOINT at any time to return the appropriate data to its original

state.

Example

Consider the CUSTOMERS table having the following records.

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

SQL

128

+ + + + + +

SQL> SELECT FROM CUSTOMERS;

+ + + + + +

NAME SALARY

+ + + + + +

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

The following code block contains the series of operations.

Now that the three deletions have taken place, let us assume that you have changed your

mind and decided to ROLLBACK to the SAVEPOINT that you identified as SP2. Because

SP2 was created after the first deletion, the last two deletions are undone:

Notice that only the first deletion took place since you rolled back to SP2.

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

SQL> SAVEPOINT SP1;

SQL> DELETE FROM CUSTOMERS WHERE ID=1;

SQL> SAVEPOINT SP2;

SQL> DELETE FROM CUSTOMERS WHERE ID=2;

SQL> SAVEPOINT SP3;

SQL> DELETE FROM CUSTOMERS WHERE ID=3;

SQL

129

+ + + + +

The RELEASE SAVEPOINT Command

The RELEASE SAVEPOINT command is used to remove a SAVEPOINT that you have

created.

The syntax for a RELEASE SAVEPOINT command is as follows.

Once a SAVEPOINT has been released, you can no longer use the ROLLBACK command to

undo transactions performed since the last SAVEPOINT.

The SET TRANSACTION Command

The SET TRANSACTION command can be used to initiate a database transaction. This

command is used to specify characteristics for the transaction that follows. For example,

you can specify a transaction to be read only or read write.

The syntax for a SET TRANSACTION command is as follows.

SET TRANSACTION READ WRITE READ ONLY

130

We have already discussed about the SQL LIKE operator, which is used to compare a

value to similar values using the wildcard operators.

SQL supports two wildcard operators in conjunction with the LIKE operator which are

explained in detail in the following table .

Wildcard Operators Description

The percent sign (%)

Matches one or more characters.

Note: MS Access uses the asterisk (*) wildcard character

instead of the percent sign (%) wildcard character.

The underscore (_)

Matches one character.

Note: MS Access uses a question mark (?) instead of the

underscore (_) to match any one character.

The percent sign represents zero, one or multiple characters. The underscore represents

a single number or a character. These symbols can be used in combinations.

Syntax

The basic syntax of a '%' and a '_' operator is as follows.

36. SQL ─ Wildcard Operators

SQL

131

You can combine N number of conditions using the AND or the OR operators. Here, XXXX

could be any numeric or string value.

Example

The following table has a number of examples showing the WHERE part having different

LIKE clauses with '%' and '_' operators.

Statement Description

WHERE SALARY LIKE '200%' Finds any values that start with 200.

WHERE SALARY LIKE '%200%'

Finds any values that have 200 in any position.

WHERE SALARY LIKE '_00%'

Finds any values that have 00 in the second and third

positions.

WHERE SALARY LIKE '2_%_%'

Finds any values that start with 2 and are at least 3

characters in length.

WHERE SALARY LIKE '%2' Finds any values that end with 2.

WHERE SALARY LIKE '_2%3'

Finds any values that have a 2 in the second position

and end with a 3.

WHERE SALARY LIKE '2 3'

Finds any values in a five-digit number that start with

2 and end with 3.

SQL

132

 +

ID NAME |AGE| SALARY

+ + + + + +

1 Ramesh

Kota

Mumbai

MP

+ + + + + +

+

NAME

+ +

SALARY

Let us take a real example, consider the CUSTOMERS table having the following records.

The following code block is an example, which would display all the records from the

CUSTOMERS table where the SALARY starts with 200.

This would produce the following result.

SQL

133

